Esempio n. 1
0
def make_quickview(qickview_figure_file,  raw_image_file, glt_image_file, setting_file):
    """ Make a RGB quickview image.
    Arguments:
        qickview_figure_file: str
            Quickview figure filename.
        raw_image_file: str
            Raw Hyspex image filename.
        glt_image_file: str
            GLT image filename.
    """
    from radiometric import get_cal_data, raw2rdn
    # Read Hyspex raw image
    raw_header = read_envi_header(raw_image_file[:-len('.hyspex')]+'.hdr')
    raw_image = np.memmap(raw_image_file,
                          dtype='int16',
                          mode='r',
                          offset=raw_header['header offset'],
                          shape=(raw_header['lines'], raw_header['bands'], raw_header['samples']))
    cal_data = get_cal_data(raw_image_file, setting_file)

    # Read GLT image
    glt_header = read_envi_header(glt_image_file+'.hdr')
    glt_image = np.memmap(glt_image_file,
                          dtype=np.int32,
                          mode='r',
                          offset=0,
                          shape=(2, glt_header['lines'], glt_header['samples']))

    # Write RGB image
    driver = gdal.GetDriverByName('GTiff')
    ds = driver.Create(qickview_figure_file,
                       glt_header['samples'], glt_header['lines'], 3,
                       gdal.GDT_Byte)
    ds.SetGeoTransform((float(glt_header['map info'][3]),
                        float(glt_header['map info'][5]),
                        0, float(glt_header['map info'][4]),
                        0, -float(glt_header['map info'][6])))
    ds.SetProjection(glt_header['coordinate system string'])
    quickview_image = np.zeros((glt_header['lines'], glt_header['samples']), dtype='uint8')
    I,J = np.where(glt_image[0,:,:]>0)
    for output_band_index, rgb_band_index in enumerate(raw_header['default bands']):
        quickview_image[:,:] = 0
        rdn_image = raw2rdn(raw_image[:,rgb_band_index-1,:], cal_data, rgb_band_index-1)
        rdn_image = linear_percent_stretch(rdn_image)
        quickview_image[I,J] = rdn_image[glt_image[0,I,J], glt_image[1,I,J]]
        ds.GetRasterBand(output_band_index+1).WriteArray(quickview_image)
        del rdn_image
    raw_image.flush()
    glt_image.flush()
    ds = None
    del cal_data, I, J, glt_header, raw_header

    logger.info('Save quickview figure to %s.' %qickview_figure_file)
Esempio n. 2
0
def get_acquisition_time(header_file, imugps_file):
    """Get Hyspex image acquistion time.
    Notes:
        (1) The code is adapted from Brendan Heberlein's ([email protected]) script.
    Arguments:
        header_file: str
            Hyspex header filename.
        imugps_file: str
            Hyspex imugps filename.
    Returns:
        when: datetime object
            Image acquisition time.
    """

    from datetime import datetime, timedelta
    from envi import read_envi_header

    header = read_envi_header(header_file)
    week_start = datetime.strptime(f"{header['acquisition date']} 00:00:00",
                                   "%Y-%m-%d %H:%M:%S")
    week_seconds = np.loadtxt(imugps_file)[:, 7].mean()
    epoch = datetime(1980, 1, 6, 0, 0)
    gps_week = (week_start - epoch).days // 7
    time_elapsed = timedelta(days=gps_week * 7, seconds=week_seconds)
    when = epoch + time_elapsed

    return when
Esempio n. 3
0
def get_avg_scan_angles(sca_image_file):
    """ Get average scan angles along each column.
    Arguments:
        sca_image_file: str
            Sensor view angle image filename.
    Returns:
        avg_vza, avg_raa: 1D array
            Averaged view zenith angle, averaged relative azimuth angle.
    """

    # Read scan angles
    sca_header = read_envi_header(sca_image_file + '.hdr')
    sca_image = np.memmap(sca_image_file,
                          dtype='float32',
                          mode='r',
                          offset=0,
                          shape=(sca_header['bands'], sca_header['lines'],
                                 sca_header['samples']))

    # Get average sensor view zenith angle along each column
    avg_vza = sca_image[0, :, :].mean(axis=0)

    # Get average relative azimuth angle along each column
    saa = float(sca_header['sun azimuth'])
    raa = saa - sca_image[1, :, :]
    raa[raa < 0] += 360.0
    raa[raa > 180] = 360.0 - raa[raa > 180]
    avg_raa = raa.mean(axis=0)

    sca_image.flush()
    del saa, raa

    return avg_vza, avg_raa
Esempio n. 4
0
def plot_image_area(image_area_figure_file, dem_image_file, igm_image_file, imugps_file):
    """ Plot image area.
    Arguments:
        image_area_figure_file: str
            Image area figure filename.
        dem_image_file: str
            DEM image filename.
        igm_image_file: str
            IGM image filename.
        imugps_file: str
            IMUGPS filename.
    """

    # Read DEM.
    ds = gdal.Open(dem_image_file, gdal.GA_ReadOnly)
    dem_image = ds.GetRasterBand(1).ReadAsArray()
    dem_geotransform = ds.GetGeoTransform()
    ds = None

    # Read IGM.
    igm_header = read_envi_header(igm_image_file+'.hdr')
    igm_image = np.memmap(igm_image_file,
                          dtype='float64',
                          mode='r',
                          offset=0,
                          shape=(2, igm_header['lines'], igm_header['samples']))
    cols = (igm_image[0,:,:]-dem_geotransform[0])/dem_geotransform[1]
    rows = (igm_image[1,:,:]-dem_geotransform[3])/dem_geotransform[5]
    igm_image.flush()

    # Read IMUGPS
    imugps = np.loadtxt(imugps_file)

    # Make a plot
    plt.figure(figsize=(10, 10.0*dem_image.shape[0]/dem_image.shape[1]))
    plt.imshow(dem_image, cmap='gray', vmin=dem_image.min(), vmax=dem_image.max())
    del dem_image
    plt.plot(cols[:,0],  rows[:,0],  '-', color='green', lw=4)
    plt.plot(cols[:,-1], rows[:,-1], '-', color='green', lw=4)
    plt.plot(cols[0,:],  rows[0,:],  '-', color='green', lw=4)
    plt.plot(cols[-1,:], rows[-1,:], '-', color='green', lw=4)
    cols = (imugps[:,1]-dem_geotransform[0])/dem_geotransform[1]
    rows = (imugps[:,2]-dem_geotransform[3])/dem_geotransform[5]
    plt.plot(cols, rows, '-', color='red', lw=5)
    plt.plot(cols[0], rows[0], '.', color='red', ms=25)
    plt.arrow(cols[-100], rows[-100],
              cols[-1]-cols[-100], rows[-1]-rows[-100],
              head_width=10, head_length=10,
              fc='red', ec='red')
    plt.xticks([])
    plt.yticks([])
    plt.savefig(image_area_figure_file, dpi=1000)
    plt.close()
    del cols, rows, imugps

    logger.info('Save image area figure to %s.' %image_area_figure_file)
Esempio n. 5
0
def plot_angle_geometry(angle_geometry_figure_file, sca_image_file):
    """ Plot sun and view geometry in a polar coordinate system.
    Arguments:
        angle_geometry_figure_file: str
            Angle geometry figure filename.
        sca_image_file: str
            Scan angle image filename.
    """

    # Read sca image data.
    sca_header = read_envi_header(sca_image_file+'.hdr')
    sca_image = np.memmap(sca_image_file,
                          dtype='float32',
                          mode='r',
                          offset=0,
                          shape=(sca_header['bands'], sca_header['lines'], sca_header['samples']))

    # Scatter-plot view geometry.
    plt.figure(figsize=(10, 10))
    ax = plt.subplot(111, projection='polar')
    ax.scatter(np.deg2rad(sca_image[1,:,:].flatten()), sca_image[0,:,:].flatten(), color='green')
    sca_image.flush()

    # Scatter-plot sun geometry.
    ax.scatter(np.deg2rad(float(sca_header['sun azimuth'])), float(sca_header['sun zenith']), color='red', marker='*', s=500)
    del sca_header

    # Flip figure left to right.
    ax.set_theta_direction(-1)

    # Rotate figure by 90 degrees.
    ax.set_theta_zero_location('N')
    ax.tick_params(labelsize=20)
    plt.savefig(angle_geometry_figure_file)
    plt.close()

    del ax

    logger.info('Save angle geometry figure to %s.' %angle_geometry_figure_file)
Esempio n. 6
0
def make_atm_lut(config):
    """ Make an atmophere look-up-table (LUT).
    Notes:
        (1) If the `atm_database` exits, then do interpolation to generate a LUT.
            Otherwise, use the LibRadTran model to generate it.
    Arguments:
        config: dictionary
            Configuration parameters.
    """
    from envi import read_envi_header
    from dem import get_avg_elev

    # If the LUT has been created, do nothing.
    if os.path.exists(config['atm_lut_file']):
        logger.info('Write atmospheric LUT to %s.' % config['atm_lut_file'])
        return

    # Make a directory.
    if not os.path.exists(config['atm_lut_dir']):
        os.mkdir(config['atm_lut_dir'])

    # Make the LUT
    """ Notes:
        (1) If `atm_database` is None, the LibRadTran model is used to the LUT.
            Otherwise, the LUT is interpolated from the `atm_database`.
    """
    """ Step 1: Read sun zenith `sza` in degrees,
                sun azimuth `saa` in degrees,
                elevation `elev` in km,
                above-ground flight altitude `zout` in km.
    """
    sca_header = read_envi_header(config['vnir']['sca_image_file'] + '.hdr')
    sza = float(sca_header['sun zenith'])
    saa = float(sca_header['sun azimuth'])
    elev = get_avg_elev(config['vnir']['new_dem_image_file']) / 1000.0
    imugps = np.loadtxt(config['vnir']['new_imugps_file'])
    avg_flight_altitude = imugps[:, 3].mean()
    zout = avg_flight_altitude / 1000.0 - elev
    del imugps, sca_header, avg_flight_altitude
    """ Step 2: Get the LUT grids of
                view zenith angle `VZA` in degrees,
                relative azimuth angle `RAA` in degrees.
    """
    VZA = []
    RAA = []
    for sensor in ['vnir', 'swir']:
        sca_header = read_envi_header(config[sensor]['sca_image_file'] +
                                      '.hdr')
        sca_image = np.memmap(config[sensor]['sca_image_file'],
                              dtype='float32',
                              mode='r',
                              offset=0,
                              shape=(2, sca_header['lines'],
                                     sca_header['samples']))
        raa = saa - sca_image[1, :, :]
        raa[raa < 0] += 360.0
        raa[raa > 180] = 360.0 - raa[raa > 180]
        VZA += list(
            np.arange(int(np.floor(sca_image[0, :, :].min() / vza_grid)),
                      int(np.ceil(sca_image[0, :, :].max() / vza_grid)) + .01,
                      1) * vza_grid)
        RAA += list(
            np.arange(int(np.floor(raa.min() / raa_grid)),
                      int(np.ceil(raa.max() / raa_grid)) + .01, 1) * raa_grid)
        sca_image.flush()
        del raa, sca_header
    VZA = sorted(list(set(VZA)))
    RAA = sorted(list(set(RAA)))

    if config['atm_database'] is None:
        """ Step 3: Use the LibRadTran model to make the LUT.
        """

        # Initialize rtm configurations
        rtm_config = dict()
        rtm_config['altitude'] = elev
        rtm_config['zout'] = zout
        rtm_config['sun_zenith'] = sza
        rtm_config['sun_azimuth'] = 0
        rtm_config['resolution'] = config['rtm_params']['resolution']
        rtm_config['source_file'] = '../data/solar_flux/kurudz_0.1nm.dat'
        rtm_config['atmosphere_file'] = config['rtm_params']['atm_mode']
        rtm_config['lambda_0'] = 400
        rtm_config['lambda_1'] = 2500
        rtm_config['o3'] = 331

        # Make atmospheric look-up-tables
        pool = multiprocessing.Pool(processes=min(
            config['rtm_params']['cpu_count'], multiprocessing.cpu_count()))
        rtm_config['sensor_zenith'] = VZA
        rtm_config['sensor_azimuth'] = RAA
        for rho in RHO:
            rtm_config['albedo'] = rho
            for wvc in WVC:
                rtm_config['h2o'] = wvc
                for vis in VIS:
                    rtm_config['aerosol_visibility'] = vis
                    inp_file = os.path.join(
                        config['atm_lut_dir'],
                        'rho_%03d_wvc_%03d_vis_%03d.inp' %
                        (rho * 100, wvc, vis))
                    out_file = inp_file[:-len('.inp')] + '.out'
                    make_inp_file(inp_file, rtm_config)
                    if os.path.exists(out_file) and os.path.getsize(out_file):
                        continue
                    pool.apply_async(
                        run_rtm,
                        (os.path.join(config['rtm_params']['install_dir'],
                                      'test'), inp_file, out_file))
        pool.close()
        pool.join()

        # Save all .out files to a binary file
        atm_lut = np.memmap(config['atm_lut_file'],
                            dtype='float32',
                            mode='w+',
                            offset=0,
                            shape=(len(RHO), len(WVC), len(VIS), len(VZA),
                                   len(RAA), len(WAVE)))
        for rho_index, rho in enumerate(RHO):
            for wvc_index, wvc in enumerate(WVC):
                for vis_index, vis in enumerate(VIS):
                    out_file = os.path.join(
                        config['atm_lut_dir'],
                        'rho_%03d_wvc_%03d_vis_%03d.out' %
                        (rho * 100, wvc, vis))
                    data = np.loadtxt(
                        out_file, dtype='float32'
                    )  # data.shape = [len(WAVE), len(SZA)*len(RAA)]
                    data = np.dstack(
                        np.split(data, len(VZA), axis=1)
                        [::-1])  # data.shape = [len(WAVE), len(RAA), len(SZA)]
                    data = data.swapaxes(
                        0, 2)  # data.shape = [len(SZA), len(RAA), len(WAVE)]
                    """ Notes:
                        (1) In the .out file, the radiance uu is arranged as:
                            umu(0),phi(0) umu(0),phi(1) ... umu(0),phi(N)
                            umu(1),phi(0) umu(1),phi(1) ... umu(0),phi(N)
                            ...
                            umu(M),phi(0) umu(M),phi(1) ... umu(M),phi(N)
                            where umu=cos(sensor_zenith), which is ascendingly ordered.
                            To ascend SZA, we need to reverse the order of the radiance.
                            That is why we have [::-1] in the `data = np.dstack(...)` step.
                    """
                    atm_lut[rho_index, wvc_index, vis_index, :, :, :] = data
                    del data, out_file
        atm_lut.flush()
        atm_lut_metadata = dict()
        atm_lut_metadata['description'] = 'Atmospheric Look-Up-Table Metadata'
        atm_lut_metadata['dtype'] = 'float32'
        atm_lut_metadata['shape'] = [
            len(RHO),
            len(WVC),
            len(VIS),
            len(VZA),
            len(RAA),
            len(WAVE)
        ]
        atm_lut_metadata['dimension'] = [
            'RHO', 'WVC', 'VIS', 'VZA', 'RAA', 'WAVE'
        ]
        atm_lut_metadata['RHO'] = RHO
        atm_lut_metadata['WVC'] = WVC
        atm_lut_metadata['VIS'] = VIS
        atm_lut_metadata['VZA'] = VZA
        atm_lut_metadata['RAA'] = RAA
        atm_lut_metadata['WAVE'] = WAVE
        atm_lut_metadata['SZA'] = sza
        atm_lut_metadata['SAA'] = saa
        write_atm_lut_metadata(config['atm_lut_file'] + '.meta',
                               atm_lut_metadata)
        #TODO: remove all *.inp and *.out files.
    else:
        #TODO: do interpolations on `atm_database` to generate the LUT.
        pass
    logger.info('Write atmospheric LUT to %s.' % config['atm_lut_file'])
Esempio n. 7
0
def remove_smile_effect(config, atm_lut_file, sun_zenith):
    from atmosphere import read_wvc_model
    # Read calibration data
    cal_data = get_cal_data(config['raw_image_file'], config['setting_file'])

    # Read raw image data
    raw_header = read_envi_header(
        os.path.splitext(config['raw_image_file'])[0] + '.hdr')
    raw_image = np.memmap(config['raw_image_file'],
                          dtype='uint16',
                          mode='r',
                          offset=raw_header['header offset'],
                          shape=(raw_header['lines'], raw_header['bands'],
                                 raw_header['samples']))
    samples = raw_header['samples']

    # Read mask
    mask_header = read_envi_header(
        os.path.splitext(config['raw_image_file'])[0] + '.hdr')
    mask_image = np.memmap(config['mask_image_file'],
                           dtype='bool',
                           mode='r',
                           shape=(mask_header['bands'], raw_header['lines'],
                                  raw_header['samples']))

    # Get average radiance spectra with dark current corrected
    avg_rdn_01 = get_avg_rdn_01(raw_image, cal_data, mask_image)
    raw_image.flush()
    mask_image.flush()
    del raw_header, mask_header

    # Get average radiance spectra with dark current and gain corrected
    avg_rdn_02 = get_avg_rdn_02(avg_rdn_01, cal_data)

    plt.figure()
    plt.plot(cal_data['spectralVector'], avg_rdn_02, '-')
    plt.show()

    plt.figure()
    plt.plot(cal_data['spectralVector'], avg_rdn_02[:, 10], '-')
    plt.show()

    # Get average scan angles
    avg_vza, avg_raa = get_avg_scan_angles(config['sca_image_file'])

    # Build water vapor column estimation model
    """ Notes:
        (1) The view geometry does not seem to affect the model.
            Therefore, a vza=0 and raa=0 are used here.
    """
    wvc_model = read_wvc_model(config['wvc_model_file'])

    # Estimate water vapor for each column
    ratio = avg_rdn_02[wvc_model['Bands'][1], :] / (
        avg_rdn_02[wvc_model['Bands'][0], :] * wvc_model['Weights'][0] +
        avg_rdn_02[wvc_model['Bands'][2], :] * wvc_model['Weights'][1])
    wvc = np.interp(ratio, wvc_model['Ratio'], wvc_model['WVC'])
    vis = 80
    plt.figure()
    plt.plot(wvc_model['Ratio'], wvc_model['WVC'], 'r.-')
    plt.plot(ratio, wvc, 'b.')
    plt.show()
    del ratio

    wvc = wvc.mean()
    # Interpolate atm lut
    lut_wave, lut_rdn_0, lut_rdn_1 = interp_atm_lut_to_angles(
        atm_lut_file, wvc, vis, avg_vza, avg_raa)

    plt.plot(lut_wave, lut_rdn_0, 'r-')
    plt.show()

    for wave_range in features.values():
        wave_range = [744, 784]
        #        wave_range = [1255, 1285]
        wave_0, band_0 = get_closest_wave(cal_data['spectralVector'],
                                          wave_range[0])
        wave_1, band_1 = get_closest_wave(cal_data['spectralVector'],
                                          wave_range[1])
        if abs(wave_0 - wave_range[0]) > 10 or abs(wave_1 -
                                                   wave_range[1]) > 10:
            continue

        X = []
        lower_bounds = [-5.0, -2.0]
        upper_bounds = [5.0, 2.0]
        for sample in range(0, samples, 100):
            x0 = [0, 0]
            p = optimize.least_squares(err,
                                       x0,
                                       bounds=(lower_bounds, upper_bounds),
                                       args=(cal_data, avg_rdn_01, lut_wave,
                                             lut_rdn_0, lut_rdn_1,
                                             [band_0, band_1 + 1], sample))
            X.append(p.x)
    X = np.array(X)
    plt.plot(X[:, 0], '.', color='blue')
    plt.show()
Esempio n. 8
0
def build_mask(mask_image_file, raw_image_file, setting_file, sun_zenith):
    """ Mask out bad pixels.
    Arguments:
        mask_image_file: str
            Mask image filename.
        raw_image: 3D array
            Raw DN image, dimension = [lines, bands, samples]
        cal_data: dict
            Calibration data.
        sun_zenith: float
            Sun zenith angle in degrees.
    """

    # Read calibration data
    cal_data = get_cal_data(raw_image_file, setting_file)

    # Read raw image data
    raw_header = read_envi_header(os.path.splitext(raw_image_file)[0] + '.hdr')
    raw_image = np.memmap(raw_image_file,
                          dtype='int16',
                          mode='r',
                          offset=raw_header['header offset'],
                          shape=(raw_header['lines'], raw_header['bands'],
                                 raw_header['samples']))
    bands = raw_header['bands']
    """ Rule 1 for good pixels:
        At-sensor blue reflectance>0.10, and nir reflectance>0.10, and swir reflectance>0.10
    """
    solar_flux = resample_solar_flux(solar_flux_file,
                                     cal_data['spectralVector'],
                                     cal_data['fwhm'])
    solar_flux /= 10  # mW / (m2 nm) -> mW / (cm2 um)
    cos_sun_zenith = np.cos(np.deg2rad(sun_zenith))
    mask = np.full((raw_image.shape[0], raw_image.shape[2]),
                   True,
                   dtype=np.bool)
    # if the reflectance at 470 nm is less than 0.10, then mask these pixels.
    wave, band = get_closest_wave(cal_data['spectralVector'], 470)
    if abs(wave - 470) < 10:
        refl = raw2rdn(raw_image[:, band, :], cal_data,
                       band) * np.pi / (solar_flux[band] * cos_sun_zenith)
        mask &= (refl > 0.10)
    # if the reflectance at 850 nm is less than 0.10, then mask these pixels.
    wave, band = get_closest_wave(cal_data['spectralVector'], 850)
    if abs(wave - 850) < 10:
        refl = raw2rdn(raw_image[:, band, :], cal_data,
                       band) * np.pi / (solar_flux[band] * cos_sun_zenith)
        mask &= (refl > 0.10)
    # if the reflectance at 1600 nm is less than 0.10, then mask these pixels.
    wave, band = get_closest_wave(cal_data['spectralVector'], 1600)
    if abs(wave - 1600) < 10:
        refl = raw2rdn(raw_image[:, band, :], cal_data,
                       band) * np.pi / (solar_flux[band] * cos_sun_zenith)
        mask &= (refl > 0.10)
    """ Rule 2:
        Mask dark pixels by using radiance values.
    """
    mask_image = np.memmap(mask_image_file,
                           dtype='uint8',
                           mode='w+',
                           shape=(raw_image.shape[1], raw_image.shape[0],
                                  raw_image.shape[2]))
    log_mesg = 'Band (max=%d): ' % bands
    for band in range(bands):
        if band % 50 == 0:
            log_mesg += '%d, ' % band
        rdn = raw2rdn(raw_image[:, band, :], cal_data, band)
        mask_image[band, :, :] = mask & (raw_image[:, band, :] <
                                         cal_data['satValue']) & (rdn > 0.0)
        del rdn
    mask_image.flush()
    raw_image.flush()
    del cal_data, mask
    log_mesg += '%d, Done!' % bands
    logging.info(log_mesg)

    mask_header = empty_envi_header()
    mask_header['description'] = 'Mask 0: bad; 1: good'
    mask_header['samples'] = raw_image.shape[2]
    mask_header['lines'] = raw_image.shape[0]
    mask_header['bands'] = raw_image.shape[1]
    mask_header['byte order'] = 0
    mask_header['header offset'] = 0
    mask_header['interleave'] = 'bsq'
    mask_header['data type'] = 1
    write_envi_header(mask_image_file + '.hdr', mask_header)