Esempio n. 1
0
def main():
    os.environ["PYGAME_HIDE_SUPPORT_PROMPT"] = "true"  # cancel py-game display
    from environment.game import Game
    from agents.random_agent import RandomAgent
    from agents.ddqn_agent import DdqnAgent
    from agents.constant_agent import ConstantAgent
    from agents.basic_mcts_agent import BasicMCTSAgent
    from runnable_scripts.Utils import create_dir, ridge_plot, save_ini_file

    # create directory for storing the results
    dir_path = create_dir()

    # create the game with the required agents
    env = Game(
        device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
        agent_zombie=RandomAgent,
        agent_light=DdqnAgent)
    #    env = Game(device=torch.device("cuda" if torch.cuda.is_available() else "cpu"), agent_zombie=BasicMCTSAgent, agent_light=ConstantAgent)

    # play the game and produce the dictionaries of the results
    episodes_dict, steps_dict_light, steps_dict_zombie = env.play_zero_sum_game(
        dir_path)

    # save and create results graph
    results_file_name = '/results_' + time.strftime('%d_%m_%Y_%H_%M')
    save_ini_file(dir_path, results_file_name, steps_dict_light,
                  steps_dict_zombie, episodes_dict)
    ridge_plot(dir_path, results_file_name + '.xlsx')

    print('Eliav king')
Esempio n. 2
0
    def simulate_action(alive_zombies, agent_type, action):
        """
        Simulating future states by 'actions' of an agent
        :param alive_zombies: all alive zombies at the real world
        :param agent_type: 'zombie' or 'light' agent
        :param action: array containing all the actions to simulate
        :return: total reward of the simulation
        """
        new_alive_zombies = list(copy.deepcopy(alive_zombies))  # make a copy of all zombies - we do not want to make any act in real world

        # set action and light agents actions
        if agent_type == 'zombie':
            zombie_action = action
            # random sample len(actions) times from light-agent actions-space
            light_action = 0  # np.random.randint(0, BasicMCTSAgent.BOARD_HEIGHT * BasicMCTSAgent.BOARD_WIDTH)
        else:
            light_action = action
            # sample n times from zombie-agent actions-space
            zombie_action = np.random.randint(0, BasicMCTSAgent.BOARD_HEIGHT)

        # simulate and aggregate reward
        total_reward = 0
        new_zombie = Game.create_zombie(zombie_action)
        new_alive_zombies.append(new_zombie)
        reward, final_alive_zombies = Game.calc_reward_and_move_zombies(new_alive_zombies, light_action)
        total_reward += reward

        return total_reward, final_alive_zombies
def main():

    #TODO:- take input args to toggle debug mode

    #reads file to list so that indexing is easy
    filename = 'config.txt'
    fileList = []
    try:
        with open(filename) as f_obj:
            for line in f_obj:
                fileList.append(line)
    except FileNotFoundError:
        msg = "Can't find file {0}.".format(filename)
        print(msg)
        exit

    print("\nFile read succesful...")

    try:
        #config is all information a single game requires
        config = Config(fileList)
        config.setMappings()

        #metaConfig is the information required to run several games in a row
        metaconfig = MetaConfig(fileList)
        if (metaconfig.totalGames > 1): cumulative = CumulativeGraph()

    except IndexError:
        print("\nIssue with config file. Exiting program... \n")
        exit

    cumulative = CumulativeGraph()

    for x in range(1, metaconfig.totalGames + 1):
        population = []
        game = Game(config, 0, population)
        game.initialMorphGen(config)
        results = game.run(config)

        if metaconfig.plotIndiv == 1:
            graph = BasicGraph(results)
            graph.plotResults(config, metaconfig.savePlots,
                              metaconfig.plotDirectory)

        if metaconfig.totalGames > 1:
            cumulative.addGame(results)
            updateConfig(config, metaconfig)

    if metaconfig.totalGames > 1:
        if int(metaconfig.mergeCumulative, 10) == 1:
            cumulative.plotMergedResults(metaconfig.plotIndiv,
                                         metaconfig.plotDirectory, config)
    if (metaconfig.savePlots == 1):
        cumulative.saveResults(metaconfig.plotDirectory)
    print(
        "\nExecution succesful. Deallocating memory and exiting program...\n")
Esempio n. 4
0
    def act(self, game: Game, snake_idx: int):
        snake = game.get_snake(snake_idx)
        possible_actions = snake.possible_actions()

        if possible_actions is None:
            return None

        grid_map = game.get_grid()

        busy_action = self.feel_busy(snake, game, grid_map)
        if busy_action is not None:
            return busy_action

        return np.random.choice(possible_actions)
Esempio n. 5
0
def create_dummy_game(i: int = 0, overwrite: bool = True, show: bool = True):
    cfg = get_shared_config()
    ROBOT_INIT_POS = Vec2d(cfg.game.x_axis / 2, cfg.game.y_axis /
                           2)  # Initial position of the drone
    spawn_f = SpawnSimple(game_config=cfg, train=True)
    spawn_f.add_location((1, 1))
    game = Game(
        config=cfg,
        game_id=get_game_id(i, experiment_id=0),
        overwrite=overwrite,
        spawn_func=spawn_f,
    )
    game.player = Robot(game=game)
    game.set_player_init_pos(p=ROBOT_INIT_POS)
    check_and_save_game(game, show=show)
Esempio n. 6
0
 def evaluate(self):
     """Play the game and only record the final score."""
     self.agent.training = False
     
     # Create all the games
     games = []
     for _ in range(self.n_envs): games.append(Game())
     
     # Reset the agent
     self.agent.reset(n_envs=self.n_envs, sample_game=games[0])
     
     # Evaluate the agent on the different games
     step = 0
     finished = [False, ] * self.n_envs
     progress = tqdm()
     while not all(finished) and step < self.max_steps:
         progress.update()
         step += 1
         
         # Get the actions for the current states
         actions = self.agent(games=games)
         
         # Go over each game and progress by one
         for i, (g, a, f) in enumerate(zip(games, actions, finished)):
             if not f:
                 # Progress the game with one step
                 finished[i] = not g.step(a=a)
     progress.close()
     
     # Return the final scores of each game
     return [g.score for g in games]
Esempio n. 7
0
    def act(self, game: Game, snake_idx: int):
        snake = game.get_snake(snake_idx)
        possible_actions = snake.possible_actions()

        if self.next_action in possible_actions:
            self.last_action = self.next_action

        return self.last_action
Esempio n. 8
0
def create_game(first_player: Player,
                second_player: Player,
                first_color: Color = Color.RED) -> Game:
    return Game(grid=Grid(),
                judge=judge,
                first_player=first_player,
                second_player=second_player,
                first_color=first_color)
Esempio n. 9
0
    def act(self, game: Game, snake_idx: int) -> Optional[Direction]:
        snake = game.get_snake(snake_idx)
        all_snacks = game.snakes
        grid_map = game.get_grid()
        opponent = None

        for i, s in enumerate(all_snacks):
            if i == snake_idx:
                continue
            opponent = s

        head = snake.get_head()
        # print('position of head [%d, %d] and direction: %s' % (head.x, head.y, head.direction))
        fruits = game.get_fruits()
        direction = None
        for fruit in fruits:
            cost, path = KILabAgent.a_star_search(game, head, head.direction, fruit, grid_map)
            field = path[0]
            if not opponent.is_dead():
                head_op = opponent.get_head()
                op_to_fruit = abs(head_op.x - fruit.x) + abs(head_op.y - fruit.y)
                to_fruit = abs(head.x - fruit.x) + abs(head.y - fruit.y)
                if snake.length() < opponent.length():
                    if to_fruit > op_to_fruit:
                        f = grid_map.get_object_at(int(game.width/2), int(game.height/2))
                        while game.is_obstacle(f):
                            f = grid_map.get_object_at(f.x + 1, f.y + 1)
                        field = f

            delta_x = head.x - field.x
            delta_y = head.y - field.y
            if delta_y == 0:
                if delta_x > 0:
                    direction = Direction.LEFT
                else:
                    direction = Direction.RIGHT
            if delta_x == 0:
                if delta_y > 0:
                    direction = Direction.UP
                else:
                    direction = Direction.DOWN

        return direction
Esempio n. 10
0
def get_game():
    cfg = Config()
    cfg.game.fps = 60
    cfg.game.x_axis = 1
    cfg.game.y_axis = 1
    cfg.update()
    spawn = SpawnSimple(game_config=cfg)
    spawn.add_location((10, 10))  # Dummy location
    game = Game(
            config=cfg,
            game_id=0,
            noise=False,
            overwrite=True,
            save_path="tests/games_db/",
            silent=True,
            spawn_func=spawn,
            wall_bound=True,
    )
    game.set_player_init_pos(Vec2d(0.5, 0.5))
    game.sample_target()
    game.reset()
    return game
Esempio n. 11
0
    def feel_busy(self, snake: Snake, game: Game, grid_map: GridMap):

        possible_actions = snake.possible_actions()
        head = snake.get_head()

        if possible_actions is None:
            return None

        actions_without_obstacle = []

        for action in possible_actions:
            neighbor = grid_map.get_neighbor(head.x, head.y, action, game.height, game.width)

            if neighbor is None:
                continue

            if not Game.is_obstacle(neighbor):
                actions_without_obstacle.append(action)

        if len(actions_without_obstacle) > 0:
            return np.random.choice(actions_without_obstacle)
        else:
            return None
Esempio n. 12
0
 def train(self):
     """
     Play the game while recording actions and rewards, which are used afterwards to train the agent model on.
     
     :return: Scores (per game), durations (pg), snake-length (pg), training loss
     """
     # Create all the games
     games = []
     for _ in range(self.n_envs): games.append(Game())
     
     # Reset the agent
     self.agent.training = True
     self.agent.reset(n_envs=self.n_envs, sample_game=games[0])
     
     # Evaluate the agent on the different games
     duration = [0, ] * self.n_envs  # First iteration gets duration 0
     finished = [False, ] * self.n_envs
     while not all(finished) and max(duration) < self.max_steps:
         # Get the actions for the current states
         actions = self.agent(games)
         uses_tuple = isinstance(actions[0], tuple)
         
         # Go over each game and progress by one
         for i, (g, a, f) in enumerate(zip(games, actions, finished)):
             if not f:
                 # Progress the game with one step
                 finished[i] = not g.step(a=a, uses_tuple=uses_tuple)
                 
                 # Progress duration of game
                 duration[i] += 1
     
     # Train the model before returning the scores
     loss = self.agent.train(duration=duration, max_duration=self.max_steps)
     
     # Return the final scores of each game
     return [g.score for g in games], duration, [len(g.snake.body) for g in games], loss
Esempio n. 13
0
"""
inspect_games.py

Check if all games are created correctly.
"""
import os

from config import Config
from environment.game import Game

if __name__ == '__main__':
    os.chdir("../..")
    config = Config()
    for g_id in [1, 2, 3]:
        try:
            game = Game(
                game_id=g_id,
                config=config,
                save_path="environment/games_db/",
                overwrite=False,
                silent=True,
            )
            game.close()
            game.reset()
            game.get_blueprint()
            game.get_observation()
            game.step(0, 0)
        except Exception:
            print(f"Bug in game: {g_id}, please manually redo this one")
Esempio n. 14
0
                (last_move is not None and self._judge.is_over_after_move_in_col(grid.state, last_move)):
            return self._evaluate(grid.state, self._judge), 0

        value = -INF if color == MAX_COLOR else INF
        best_move = None
        for move in grid.available_moves:
            child_value, _ = self._minmax(grid.grid_after_move(color, move),
                                          depth - 1, alpha, beta,
                                          Color(1 - color), move)

            if color == MAX_COLOR and child_value > value:
                best_move = move
                value = child_value
                alpha = max(alpha, value)
            elif color == MIN_COLOR and child_value < value:
                best_move = move
                value = child_value
                beta = min(beta, value)

            if alpha >= beta: break

        self._transposition_table[grid.state] = (depth, value, best_move)
        return value, best_move


if __name__ == '__main__':
    game = Game(Grid(), Judge(),
                MinmaxPlayer(Color.RED, Judge(), Evaluator(), 4, 30),
                MinmaxPlayer(Color.BLACK, Judge(), Evaluator(), 6, 18))
    print(game.play())
Esempio n. 15
0
def create_experiment_3(overwrite: bool = True, show: bool = True):
    """
    Experiment 3 tests both the generalization capabilities in adapting to newly spawned targets. In this scenario, new
     targets are spawned ones the previous are found, with the goal to find as many as possible.
    
    TRAINING
     During training, new targets are spawned based on the agent's current position. Each target will lay between 4 and
     8 meters from the agent and will always be positioned inside of the maze.
    
    TESTING
     Testing is done similar as was the case for training, with the main difference that the positions of the targets
     are defined beforehand, this to ensure a fair comparison between the different evaluations. 10 targets are created,
     with the idea that it would be impossible for the drone to ever reach this many targets.
    """
    cfg = get_shared_config()

    # Fixed parameters
    ROBOT_INIT_ANGLE = pi / 2  # Looking up
    ROBOT_INIT_POS = Vec2d(cfg.game.x_axis / 2, cfg.game.y_axis /
                           2)  # Initial position of the drone

    # Create the training game
    spawn_f_train = SpawnRandom(game_config=cfg.game, train=True)
    game = Game(
        config=cfg,
        player_noise=0,
        game_id=get_game_id(0, experiment_id=3),
        overwrite=overwrite,
        spawn_func=spawn_f_train,
        stop_if_reached=False,
        wall_bound=False,
    )
    game.player = Robot(game=game)
    game.set_player_init_angle(a=ROBOT_INIT_ANGLE)
    game.set_player_init_pos(p=ROBOT_INIT_POS)
    check_and_save_game(game, show=show)

    # Create 20 evaluation games
    for i in range(1, 21):
        spawn_f_eval = SpawnRandom(game_config=cfg.game, train=False)
        game = Game(
            config=cfg,
            player_noise=0,
            game_id=get_game_id(i, experiment_id=3),
            overwrite=overwrite,
            spawn_func=spawn_f_eval,
            stop_if_reached=False,
            wall_bound=False,
        )
        game.player = Robot(game=game)
        game.set_player_init_angle(a=ROBOT_INIT_ANGLE)
        game.set_player_init_pos(p=ROBOT_INIT_POS)
        check_and_save_game(game, show=show, randomize=False)
Esempio n. 16
0
def live_visualisation(agent: Agent = Empty(), game: Game = None):
    """Visualise the performance of the given agent."""
    if not game: game = Game()

    # Regularly used constants
    width = game.width * game.pixels
    height = game.height * game.pixels

    # Initialise the Pyglet instance
    window = pyglet.window.Window(width,
                                  height,
                                  "PySnake",
                                  resizable=False,
                                  visible=True)
    window.set_location(100, 100)
    pyglet.gl.glClearColor(1, 1, 1, 1)

    # Draw the environment
    space = pymunk.Space()
    options = DrawOptions()

    # Label for the score
    label = pyglet.text.Label(f'{game.score}',
                              font_size=12,
                              color=(100, 100, 100, 100),
                              x=window.width - 30,
                              y=window.height - 30,
                              anchor_x='center',
                              anchor_y='center')

    # Draw a square in the environment
    def draw_segment(pos, i=None, color=(0, 128, 0)):
        """Draw square segment at position p."""
        target_body = pymunk.Body(body_type=pymunk.Body.KINEMATIC)
        target_body.position = (pos[0] * game.pixels + game.pixels / 2,
                                pos[1] * game.pixels + game.pixels / 2)
        target_shape = pymunk.Poly.create_box(body=target_body,
                                              size=(game.pixels * 0.9,
                                                    game.pixels * 0.9))
        target_shape.sensor = True
        if i is not None: target_shape.id = i
        target_shape.color = color
        space.add(target_body, target_shape)

    # Draw the walls
    for i in range(game.height):
        draw_segment((0, i), color=(0, 0, 0))
        draw_segment((game.width - 1, i), color=(0, 0, 0))
    for i in range(game.width):
        draw_segment((i, 0), color=(0, 0, 0))
        draw_segment((i, game.height - 1), color=(0, 0, 0))

    # Draw the apple
    draw_segment(game.apple, i=-1, color=(128, 0, 0))

    # Create the Snake instance
    snake_i = IntegerGenerator()  # Iterator for the snake segments
    agent.training = False
    agent.reset(n_envs=1, sample_game=game)

    def draw_snake(init=False):
        """Draw the snake."""
        if init:
            for p in reversed(game.snake.body):
                draw_segment(p, i=snake_i())
        else:
            draw_segment(game.snake.body[0], i=snake_i())

    # Initialise the snake
    draw_snake(init=True)

    @window.event
    def on_draw():
        window.clear()
        label.text = str(game.score)
        label.draw()
        space.debug_draw(options=options)

    # Make game keyboard sensitive
    if type(agent) == Empty:

        @window.event
        def on_key_press(key, _):
            """Called whenever a key is pressed to record manual input."""
            if key == arcade.key.LEFT and game.snake.direction != RIGHT:
                game.snake.direction = LEFT
            elif key == arcade.key.RIGHT and game.snake.direction != LEFT:
                game.snake.direction = RIGHT
            elif key == arcade.key.UP and game.snake.direction != DOWN:
                game.snake.direction = UP
            elif key == arcade.key.DOWN and game.snake.direction != UP:
                game.snake.direction = DOWN

    def update_method(dt):
        """Update the game environment."""
        # Query brain to get action for current state
        a = agent([game])[0]

        # Progress the game
        score_pre = game.score
        alive = game.step(a=a)
        if not alive: pyglet.app.exit()
        score_post = game.score
        eaten = score_pre != score_post

        # Remove the oldest added shape
        for shape in space.shapes:
            if hasattr(shape, 'id') and shape.id <= len(snake_i) - (
                    game.snake.length - 1):
                if eaten:
                    space.remove(shape.body, shape)
                    draw_segment(game.apple, i=-1, color=(128, 0, 0))
                elif shape.id >= 0:
                    space.remove(shape.body, shape)

        # Proceed the snake
        draw_snake()

        # Perform required action
        space.step(dt)

    # Run the game
    pyglet.clock.schedule_interval(update_method, .1)
    pyglet.app.run()
Esempio n. 17
0
 def act(QDKrSREt, game: Game, snake_idx: int):
     QDKrSREC = []
     QDKrSREe = None
     for QDKrSREf, snake in enumerate(game.snakes):
         if not snake.body:
             continue
         if QDKrSREf == snake_idx:
             QDKrSREM = snake
         else:
             QDKrSREn = snake
             QDKrSREC = QDKrSREn.body
             QDKrSREF = QDKrSREC[0].x
             QDKrSREL = QDKrSREC[0].y
     QDKrSREm = QDKrSREM.body
     QDKrSREz = QDKrSREm[0].x
     QDKrSREG = QDKrSREm[0].y
     QDKrSREo = QDKrSREm[-1].x
     QDKrSREW = QDKrSREm[-1].x
     QDKrSREg = game.width
     QDKrSREU = game.height
     QDKrSREs = game.get_fruits()
     QDKrSREJ = QDKrSREg * 2 + QDKrSREU * 2
     for QDKrSREV in QDKrSREs:
         QDKrSREx = QDKrSREV.x
         QDKrSREd = QDKrSREV.y
         QDKrSREN = abs(QDKrSREG - QDKrSREd) + abs(QDKrSREz - QDKrSREx)
         if QDKrSREN < QDKrSREJ:
             QDKrSREJ = QDKrSREN
             QDKrSREv = QDKrSREV.x
             QDKrSREX = QDKrSREV.y
     QDKrSREj = 0
     for QDKrSREV in QDKrSREs:
         QDKrSREx = QDKrSREV.x
         QDKrSREd = QDKrSREV.y
         QDKrSREN = abs(QDKrSREG - QDKrSREd) + abs(QDKrSREz - QDKrSREx)
         for QDKrSREf, snake in enumerate(game.snakes):
             if not snake.body:
                 continue
             if QDKrSREf == snake_idx:
                 continue
             else:
                 QDKrSREn = snake
                 QDKrSREC = QDKrSREn.body
                 QDKrSREF = QDKrSREC[0].x
                 QDKrSREL = QDKrSREC[0].y
                 QDKrSREy = abs(QDKrSREL - QDKrSREX) + abs(QDKrSREF -
                                                           QDKrSREv)
                 if QDKrSREy <= QDKrSREN:
                     QDKrSREj += 0
                     continue
                 else:
                     QDKrSREN = abs(QDKrSREG - QDKrSREd) + abs(QDKrSREz -
                                                               QDKrSREx)
                     QDKrSREj += 1
                     if QDKrSREN < QDKrSREJ:
                         QDKrSREJ = QDKrSREN
                         QDKrSREv = QDKrSREV.x
                         QDKrSREX = QDKrSREV.y
     if QDKrSREj == 0:
         for QDKrSREV in QDKrSREs:
             QDKrSREx = QDKrSREV.x
             QDKrSREd = QDKrSREV.y
             QDKrSREN = abs(QDKrSREG - QDKrSREd) + abs(QDKrSREz - QDKrSREx)
             if QDKrSREN < QDKrSREJ:
                 QDKrSREJ = QDKrSREN
                 QDKrSREv = QDKrSREV.x
                 QDKrSREX = QDKrSREV.y
     QDKrSREP = numpy.zeros((QDKrSREg, QDKrSREU))
     QDKrSREY = [n for n in range(100)]
     for QDKrSREA in QDKrSREm:
         QDKrSREP[QDKrSREA.x, QDKrSREA.y] = 1
     if len(game.snakes) > 1:
         for QDKrSREH in QDKrSREC:
             QDKrSREP[QDKrSREH.x, QDKrSREH.y] = 1
     for QDKrSREf, snake in enumerate(game.snakes):
         if not snake.body:
             continue
         if QDKrSREf == snake_idx:
             continue
         else:
             QDKrSREn = snake
             QDKrSREC = QDKrSREn.body
             QDKrSREF = QDKrSREC[0].x
             QDKrSREL = QDKrSREC[0].y
             for QDKrSREH in QDKrSREC:
                 QDKrSREP[QDKrSREH.x, QDKrSREH.y] = 1
             if len(QDKrSREC) >= len(QDKrSREm):
                 for QDKrSREV in QDKrSREs:
                     if not QDKrSREt.astar(QDKrSREP, (QDKrSREF, QDKrSREL),
                                           (QDKrSREV.x, QDKrSREV.y)):
                         continue
                     else:
                         QDKrSREp = QDKrSREt.astar(QDKrSREP,
                                                   (QDKrSREF, QDKrSREL),
                                                   (QDKrSREV.x, QDKrSREV.y))
                         if len(QDKrSREp) <= 3:
                             if len(QDKrSREp) < len(QDKrSREY):
                                 QDKrSREY = QDKrSREp
                                 QDKrSRET = QDKrSREY[-1]
                                 QDKrSREi = QDKrSRET[0]
                                 QDKrSREc = QDKrSRET[1]
                                 QDKrSREP[QDKrSREi, QDKrSREc] = 1
     QDKrSREa = [n for n in range(100)]
     QDKrSREw = [QDKrSREu for QDKrSREu in range(QDKrSREg)]
     QDKrSREl = [QDKrSREI for QDKrSREI in range(QDKrSREU)]
     for QDKrSREu in QDKrSREw:
         QDKrSREP[QDKrSREu, 0] = 1
         QDKrSREP[QDKrSREu, QDKrSREU - 1] = 1
     for QDKrSREI in QDKrSREl:
         QDKrSREP[0, QDKrSREI] = 1
         QDKrSREP[QDKrSREg - 1, QDKrSREI] = 1
     for QDKrSREV in QDKrSREs:
         if not QDKrSREt.astar(QDKrSREP, (QDKrSREz, QDKrSREG),
                               (QDKrSREV.x, QDKrSREV.y)):
             continue
         else:
             QDKrSREh = QDKrSREt.astar(QDKrSREP, (QDKrSREz, QDKrSREG),
                                       (QDKrSREV.x, QDKrSREV.y))
             QDKrSREb = True
             if len(QDKrSREh) < len(QDKrSREa):
                 QDKrSREa = QDKrSREh
                 QDKrSREt.goal_x = QDKrSREV.x
                 QDKrSREt.goal_y = QDKrSREV.y
     for QDKrSREf, snake in enumerate(game.snakes):
         if not snake.body:
             continue
         if QDKrSREf == snake_idx:
             continue
         else:
             QDKrSREn = snake
             QDKrSREC = QDKrSREn.body
             QDKrSREF = QDKrSREC[0].x
             QDKrSREL = QDKrSREC[0].y
             if not QDKrSREt.astar(
                     QDKrSREP, (QDKrSREz, QDKrSREG),
                 (QDKrSREt.calculate_next_move(
                     QDKrSREF, QDKrSREL, QDKrSREt.last_enemy_head_coord_x,
                     QDKrSREt.last_enemy_head_coord_y))):
                 continue
             else:
                 if not QDKrSREt.astar(
                         QDKrSREP, (QDKrSREz, QDKrSREG),
                     (QDKrSREt.calculate_next_move(
                         QDKrSREF, QDKrSREL,
                         QDKrSREt.last_enemy_head_coord_x,
                         QDKrSREt.last_enemy_head_coord_y))):
                     continue
                 else:
                     if len(QDKrSREm) > len(QDKrSREC) + 1:
                         QDKrSREh = QDKrSREt.astar(
                             QDKrSREP, (QDKrSREz, QDKrSREG),
                             (QDKrSREt.calculate_next_move(
                                 QDKrSREF, QDKrSREL,
                                 QDKrSREt.last_enemy_head_coord_x,
                                 QDKrSREt.last_enemy_head_coord_y)))
                         if len(QDKrSREh) < len(QDKrSREa):
                             print('ATTACKING!')
                             QDKrSREa = QDKrSREh
                             QDKrSREt.goal_x = QDKrSREF
                             QDKrSREt.goal_y = QDKrSREL
     QDKrSREk = [n for n in range(100)]
     QDKrSREP[QDKrSREt.goal_x, QDKrSREt.goal_y] = 9
     QDKrSREB = 0
     if QDKrSREa != [n for n in range(100)]:
         for QDKrSREV in QDKrSREs:
             for QDKrSREO in QDKrSREa:
                 QDKrSREP[QDKrSREO[0], QDKrSREO[1]] = 1
             if QDKrSREV.x == QDKrSREt.goal_x and QDKrSREV.y == QDKrSREt.goal_y:
                 QDKrSREB += 0
             else:
                 if QDKrSREt.astar(QDKrSREP,
                                   (QDKrSREt.goal_x, QDKrSREt.goal_y),
                                   (QDKrSREV.x, QDKrSREV.y)) == []:
                     QDKrSREB += 0
                 else:
                     if QDKrSREt.astar(QDKrSREP,
                                       (QDKrSREt.goal_x, QDKrSREt.goal_y),
                                       (QDKrSREV.x, QDKrSREV.y)) == False:
                         QDKrSREB += 0
                         if QDKrSREt.astar(
                                 QDKrSREP, (QDKrSREz, QDKrSREG),
                             (QDKrSREV.x, QDKrSREV.y)) != False:
                             QDKrSREh = QDKrSREt.astar(
                                 QDKrSREP, (QDKrSREz, QDKrSREG),
                                 (QDKrSREV.x, QDKrSREV.y))
                             if len(QDKrSREh) < len(QDKrSREk):
                                 QDKrSREk = QDKrSREh
                         else:
                             continue
                     else:
                         QDKrSREB += 1
         for QDKrSREO in QDKrSREa:
             QDKrSREP[QDKrSREO[0], QDKrSREO[1]] = 2
         QDKrSREP[QDKrSREt.goal_x, QDKrSREt.goal_y] = 9
         if QDKrSREB == 0:
             if QDKrSREk != [n for n in range(100)]:
                 QDKrSREa = QDKrSREk
                 QDKrSREB += 1
     if QDKrSREB == 0:
         for QDKrSREu in QDKrSREw:
             QDKrSREP[QDKrSREu, 0] = 0
             QDKrSREP[QDKrSREu, QDKrSREU - 1] = 0
         for QDKrSREI in QDKrSREl:
             QDKrSREP[0, QDKrSREI] = 0
             QDKrSREP[QDKrSREg - 1, QDKrSREI] = 0
         for QDKrSREA in QDKrSREm:
             QDKrSREP[QDKrSREA.x, QDKrSREA.y] = 1
         if len(game.snakes) > 1:
             for QDKrSREH in QDKrSREC:
                 QDKrSREP[QDKrSREH.x, QDKrSREH.y] = 1
         for QDKrSREV in QDKrSREs:
             if QDKrSREt.astar(QDKrSREP, (QDKrSREz, QDKrSREG),
                               (QDKrSREV.x, QDKrSREV.y)) == False:
                 continue
             else:
                 QDKrSREh = QDKrSREt.astar(QDKrSREP, (QDKrSREz, QDKrSREG),
                                           (QDKrSREV.x, QDKrSREV.y))
                 QDKrSREb = True
                 if len(QDKrSREh) < len(QDKrSREa):
                     QDKrSREa = QDKrSREh
                     QDKrSREt.goal_x = QDKrSREV.x
                     QDKrSREt.goal_y = QDKrSREV.y
     if QDKrSREa == [n for n in range(100)]:
         QDKrSREP[QDKrSREo, QDKrSREW] = 0
         if QDKrSREt.astar(QDKrSREP, (QDKrSREz, QDKrSREG),
                           (QDKrSREo, QDKrSREW)) == False:
             print('Cant find tail!')
         else:
             QDKrSREh = QDKrSREt.astar(QDKrSREP, (QDKrSREz, QDKrSREG),
                                       (QDKrSREo, QDKrSREW))
             if len(QDKrSREh) > 1:
                 QDKrSREa = QDKrSREh
                 print('Chasing tail!')
     QDKrSREP[QDKrSREo, QDKrSREW] = 1
     if QDKrSREa == [n for n in range(100)]:
         QDKrSREa = []
     if QDKrSREa == []:
         for QDKrSREI in QDKrSREl:
             for QDKrSREu in QDKrSREw:
                 QDKrSREq = QDKrSREt.astar(QDKrSREP, (QDKrSREz, QDKrSREG),
                                           (QDKrSREu, QDKrSREI))
                 if QDKrSREq != False and QDKrSREq != []:
                     print('found')
                     if len(QDKrSREq) > len(QDKrSREa):
                         QDKrSREa = QDKrSREq
                         print('PATH:', QDKrSREa)
     for QDKrSREf, snake in enumerate(game.snakes):
         if not snake.body:
             continue
         if QDKrSREf == snake_idx:
             continue
         else:
             QDKrSREt.last_enemy_head_coord_x = QDKrSREF
             QDKrSREt.last_enemy_head_coord_y = QDKrSREL
     if QDKrSREa != []:
         QDKrSRtE = QDKrSREa[-1]
         QDKrSRtC = QDKrSRtE[0]
         QDKrSRte = QDKrSRtE[1]
         QDKrSREe = QDKrSREt.calculate_direction(QDKrSRtC, QDKrSRte,
                                                 QDKrSREz, QDKrSREG)
     else:
         print()
         print('DEAD!')
         print()
     return QDKrSREe
Esempio n. 18
0
def create_experiment_2(overwrite: bool = True, show: bool = True):
    """
    Experiment 2 tests the generalization capabilities of the genomes based on their initial distance from the target.
    
    TRAINING
     Training is done in a maze where the robot is in the center, and the targets are positioned around the agent. Each
     run has a single target sampled. The targets all are positioned 6 meters from the robot's initial position.
    
    TESTING
     Testing is done similar as was the case for training. For testing, half of the training's initial target-
     orientations are used (18 instead of 36). However, each orientation now has two targets, both with a different
     initial position from the robot's starting position. An inner-ring has distance 4, where the outer-ring has a
     distance of 8.
    """
    cfg = get_shared_config()

    # Fixed parameters
    ROBOT_INIT_ANGLE = pi / 2  # Looking up
    ROBOT_INIT_POS = Vec2d(cfg.game.x_axis / 2, cfg.game.y_axis /
                           2)  # Initial position of the drone

    # Create the training game
    spawn_f_train = SpawnSimple(game_config=cfg, train=True)
    for i in range(0, 360, 10):  # Positions circular in hops of 10 degree
        angle = i / 180 * pi
        offset_x = 6 * cos(angle)
        offset_y = 6 * sin(angle)
        spawn_f_train.add_location(
            (ROBOT_INIT_POS[0] + offset_x, ROBOT_INIT_POS[1] + offset_y))
    game = Game(
        config=cfg,
        player_noise=0,
        game_id=get_game_id(0, experiment_id=2),
        overwrite=overwrite,
        spawn_func=spawn_f_train,
        stop_if_reached=True,
        wall_bound=False,
    )
    game.player = Robot(game=game)
    game.set_player_init_angle(a=ROBOT_INIT_ANGLE)
    game.set_player_init_pos(p=ROBOT_INIT_POS)
    check_and_save_game(game, show=show)

    # Create the inner circle of the evaluation games, each of those only contains one target
    for i in range(1, 19):
        spawn_f_eval = SpawnSimple(game_config=cfg, train=False)
        angle = i / 9 * pi  # Hops of 20°
        offset_x = 4 * cos(angle)
        offset_y = 4 * sin(angle)
        spawn_f_eval.add_location(
            (ROBOT_INIT_POS[0] + offset_x, ROBOT_INIT_POS[1] + offset_y))
        game = Game(
            config=cfg,
            player_noise=0,
            game_id=get_game_id(i, experiment_id=2),
            overwrite=overwrite,
            spawn_func=spawn_f_eval,
            stop_if_reached=True,
            wall_bound=False,
        )
        game.player = Robot(game=game)
        game.set_player_init_angle(a=ROBOT_INIT_ANGLE)
        game.set_player_init_pos(p=ROBOT_INIT_POS)
        check_and_save_game(game, show=show, randomize=False)

    # Create the outer circle of the evaluation games, each of those only contains one target
    for i in range(1, 19):
        spawn_f_eval = SpawnSimple(game_config=cfg, train=False)
        angle = i / 9 * pi  # Hops of 20°
        offset_x = 8 * cos(angle)
        offset_y = 8 * sin(angle)
        spawn_f_eval.add_location(
            (ROBOT_INIT_POS[0] + offset_x, ROBOT_INIT_POS[1] + offset_y))
        game = Game(
            config=cfg,
            player_noise=0,
            game_id=get_game_id(i + 100, experiment_id=2),
            overwrite=overwrite,
            spawn_func=spawn_f_eval,
            stop_if_reached=True,
            wall_bound=False,
        )
        game.player = Robot(game=game)
        game.set_player_init_angle(a=ROBOT_INIT_ANGLE)
        game.set_player_init_pos(p=ROBOT_INIT_POS)
        check_and_save_game(game, show=show, randomize=False)
Esempio n. 19
0
    def a_star_search(game: Game,
                      start_field: Position,
                      start_direction: Direction,
                      search_field: Position,
                      grid_map: GridMap) -> Tuple[int, List[any]]:

        queue = KLPriorityQueue()
        came_from = {}
        cost_so_far = {}
        path = []

        # Initialisierung
        g = 0
        start_field_h = math.sqrt((search_field.x - start_field.x) ** 2 + (search_field.y - start_field.y) ** 2)
        start_field_f = g + start_field_h
        queue.put(start_field_f, start_field)
        cost_so_far[start_field] = g
        # print('=== Position of Start [%d, %d], Determination [%d, %d], Directopn of head: %s ==='
        #      % (start_field.x, start_field.y, search_field.x, search_field.y, start_direction))

        # Schleife
        while not queue.empty():
            # liefert field mit wenigster F-Kosten
            field = queue.get()
            # print('Field with lowest f-cost [%d, %d]' % (field.x, field.y))
            if field.same_position(search_field):
                break
            # print('Not arrive the determination [%d, %d]' % (search_field.x, search_field.y))
            all_neighbors = grid_map.get_neighbors(field.x, field.y)
            neighbors = []
            if field.same_position(start_field):

                if start_direction == Direction.DOWN:
                    for neighbor in all_neighbors:
                        if game.is_obstacle(neighbor):
                            continue
                        if neighbor.y < start_field.y:
                            continue
                        for next_n in grid_map.get_neighbors(neighbor.x, neighbor.y):
                            if game.is_obstacle(next_n):
                                continue
                            neighbors.append(neighbor)

                if start_direction == Direction.UP:
                    for neighbor in all_neighbors:
                        if game.is_obstacle(neighbor):
                            continue
                        if neighbor.y > start_field.y:
                            continue
                        for next_n in grid_map.get_neighbors(neighbor.x, neighbor.y):
                            if game.is_obstacle(next_n):
                                continue
                            neighbors.append(neighbor)

                if start_direction == Direction.LEFT:
                    for neighbor in all_neighbors:
                        if game.is_obstacle(neighbor):
                            continue
                        if neighbor.x > start_field.x:
                            continue
                        for next_n in grid_map.get_neighbors(neighbor.x, neighbor.y):
                            if game.is_obstacle(next_n):
                                continue
                            neighbors.append(neighbor)

                if start_direction == Direction.RIGHT:
                    for neighbor in all_neighbors:
                        if game.is_obstacle(neighbor):
                            continue
                        if neighbor.x < start_field.x:
                            continue
                        for next_n in grid_map.get_neighbors(neighbor.x, neighbor.y):
                            if game.is_obstacle(next_n):
                                continue
                            # if next_n not in game.get_walls():
                            neighbors.append(neighbor)

                # mögliche Nachbarn von start_field untersuchen
                for neighbor in neighbors:
                    if game.is_obstacle(neighbor):
                        continue

                    if neighbor not in cost_so_far.keys():
                        # print('Add new position in {cost_so_far}: [%d, %d]' % (neighbor.x, neighbor.y))
                        cost_so_far[neighbor] = 10000000

                    g = cost_so_far[start_field] + 1
                    if g < cost_so_far[neighbor]:
                        cost_so_far[neighbor] = g
                        # print('Update g-cost to [%d] in position: [%d, %d]' % (g, neighbor.x, neighbor.y))
                        h = math.sqrt((search_field.x - neighbor.x) ** 2 + (search_field.y - neighbor.y) ** 2)
                        f = g + h
                        queue.put(f, neighbor)
                        # print('Add neighbor (%d, %d) in queue with f = %f' % (neighbor.x, neighbor.y, f))
                        came_from[neighbor] = start_field
                        # print('came_from[neighbor(%d, %d)] = start_field(%d, %d)'
                        #      % (neighbor.x, neighbor.y, start_field.x, start_field.y))

            else:

                for neighbor in all_neighbors:
                    if game.is_obstacle(neighbor):
                        continue

                    if neighbor not in cost_so_far.keys():
                        cost_so_far[neighbor] = 10000000
                        # print('Add new position in {cost_so_far}: [%d, %d]' % (neighbor.x, neighbor.y))

                    g = cost_so_far[field] + 1
                    if g < cost_so_far[neighbor]:
                        cost_so_far[neighbor] = g
                        # print('Update g-cost to [%d] in position: [%d, %d]' % (g, neighbor.x, neighbor.y))
                        h = math.sqrt((search_field.x - neighbor.x) ** 2 + (search_field.y - neighbor.y) ** 2)
                        f = g + h
                        queue.put(f, neighbor)
                        # print('Add neighbor (%d, %d) in queue with f = %f' % (neighbor.x, neighbor.y, f))
                        came_from[neighbor] = field
                        # print('came_from[neighbor(%d, %d)] = field(%d, %d)'
                        #      % (neighbor.x, neighbor.y, field.x, field.y))

        # Berechnung des Pfades
        path.append(search_field)
        field = came_from[search_field]
        # print('search_field comes from [%d, %d]' % (field.x, field.y))
        while not field.same_position(start_field):
            pre_field = came_from[field]
            # print('field (%d, %d) comes from pre_field (%d, %d)' % (field.x, field.y, pre_field.x, pre_field.y))
            path.append(field)
            field = pre_field

        cost = cost_so_far[search_field]
        path = path[::-1]
        for i in range(len(path)):
            field = path[i]
            # print('path-%d at field [%d, %d]' % (i, field.x, field.y))

        return cost, path
Esempio n. 20
0
def create_experiment_6(overwrite: bool = True, show: bool = True):
    """
    Experiment 6 is another 'simplified' simulation in which the agents are trained on a harder environment than they
     are tested on. The reason why is to keep a lower threshold for the 'solution' genomes (only interested in those).
    
    TRAINING
     During training, new targets are spawned based on the agent's initial position. Each target will lay between 2 and
     10 meters from the agent and will always be positioned inside of the maze.
    
    TESTING
     Testing is done on 18 predefined targets position in a relative angle from the agent of k*20° and a distance of
     either 4, 6, or 8 meters (sequential alternating).
    """
    cfg = get_shared_config()

    # Fixed parameters
    ROBOT_INIT_ANGLE = pi / 2  # Looking up
    ROBOT_INIT_POS = Vec2d(cfg.game.x_axis / 2, cfg.game.y_axis /
                           2)  # Initial position of the drone

    # Create the training game
    spawn_f_train = SpawnRange(game_config=cfg.game,
                               train=True,
                               r_max=8,
                               r_min=4)
    game = Game(
        config=cfg,
        player_noise=0,
        game_id=get_game_id(0, experiment_id=6),
        overwrite=overwrite,
        spawn_func=spawn_f_train,
        stop_if_reached=True,
        wall_bound=False,
    )
    game.player = Robot(game=game)
    game.set_player_init_angle(a=ROBOT_INIT_ANGLE)
    game.set_player_init_pos(p=ROBOT_INIT_POS)
    check_and_save_game(game, show=show)

    # Create 18 evaluation games
    for i in range(1, 19):
        spawn_f_eval = SpawnSimple(game_config=cfg.game, train=False)
        angle = i / 9 * pi  # Hops of 20°
        d = 4 if i % 3 == 0 else 6 if i % 3 == 1 else 8
        offset_x = d * cos(angle)
        offset_y = d * sin(angle)
        spawn_f_eval.add_location(
            (ROBOT_INIT_POS[0] + offset_x, ROBOT_INIT_POS[1] + offset_y))
        game = Game(
            config=cfg,
            player_noise=0,
            game_id=get_game_id(i, experiment_id=6),
            overwrite=overwrite,
            spawn_func=spawn_f_eval,
            stop_if_reached=True,
            wall_bound=False,
        )
        game.player = Robot(game=game)
        game.set_player_init_angle(a=ROBOT_INIT_ANGLE)
        game.set_player_init_pos(p=ROBOT_INIT_POS)
        check_and_save_game(game, show=show, randomize=False)
Esempio n. 21
0
 def Te(T, game: Game, snake_idx: Tu):
     G = []
     I = TW
     for Y, snake in Tb(game.snakes):
         if not snake.body:
             continue
         if Y == snake_idx:
             e = snake
         else:
             f = snake
             G = f.body
             S = G[0].x
             J = G[0].y
     P = e.body
     N = P[0].x
     L = P[0].y
     C = P[-1].x
     a = P[-1].x
     H = game.width
     k = game.height
     w = game.get_fruits()
     v = H * 2 + k * 2
     for f in w:
         u = f.x
         W = f.y
         b = TX(L - W) + TX(N - u)
         if b < v:
             v = b
             X = f.x
             x = f.y
     o = 0
     for f in w:
         u = f.x
         W = f.y
         b = TX(L - W) + TX(N - u)
         for Y, snake in Tb(game.snakes):
             if not snake.body:
                 continue
             if Y == snake_idx:
                 continue
             else:
                 f = snake
                 G = f.body
                 S = G[0].x
                 J = G[0].y
                 B = TX(J - x) + TX(S - X)
                 if B <= b:
                     o += 0
                     continue
                 else:
                     b = TX(L - W) + TX(N - u)
                     o += 1
                     if b < v:
                         v = b
                         X = f.x
                         x = f.y
     if o == 0:
         for f in w:
             u = f.x
             W = f.y
             b = TX(L - W) + TX(N - u)
             if b < v:
                 v = b
                 X = f.x
                 x = f.y
     s = Tw((H, k))
     R = [n for n in Tx(100)]
     for s in P:
         s[s.x, s.y] = 1
     if To(game.snakes) > 1:
         for e in G:
             s[e.x, e.y] = 1
     for Y, snake in Tb(game.snakes):
         if not snake.body:
             continue
         if Y == snake_idx:
             continue
         else:
             f = snake
             G = f.body
             S = G[0].x
             J = G[0].y
             for e in G:
                 s[e.x, e.y] = 1
             if To(G) >= To(P):
                 for f in w:
                     if T.TJ(s, (S, J), (f.x, f.y)) == TB:
                         continue
                     else:
                         i = T.TJ(s, (S, J), (f.x, f.y))
                         if To(i) <= 3:
                             if To(i) < To(R):
                                 R = i
                                 z = R[-1]
                                 V = z[0]
                                 E = z[1]
                                 s[V, E] = 1
     M = [n for n in Tx(100)]
     y = [width for width in Tx(H)]
     p = [height for height in Tx(k)]
     for w in y:
         s[w, 0] = 1
         s[w, k - 1] = 1
     for h in p:
         s[0, h] = 1
         s[H - 1, h] = 1
     for f in w:
         if T.TJ(s, (N, L), (f.x, f.y)) == TB:
             continue
         else:
             n = T.TJ(s, (N, L), (f.x, f.y))
             m = Ts
             if To(n) < To(M):
                 M = n
                 T.goal_x = f.x
                 T.goal_y = f.y
     for Y, snake in Tb(game.snakes):
         if not snake.body:
             continue
         if Y == snake_idx:
             continue
         else:
             f = snake
             G = f.body
             S = G[0].x
             J = G[0].y
             if T.TJ(s, (N, L), (T.TN(S, J, T.last_enemy_head_coord_x,
                                      T.last_enemy_head_coord_y))) == TB:
                 continue
             else:
                 if T.TJ(s, (N, L),
                         (T.TN(S, J, T.last_enemy_head_coord_x,
                               T.last_enemy_head_coord_y))) == []:
                     continue
                 else:
                     if To(P) > To(G) + 1:
                         n = T.TJ(s, (N, L),
                                  (T.TN(S, J, T.last_enemy_head_coord_x,
                                        T.last_enemy_head_coord_y)))
                         if To(n) < To(M):
                             TR('ATTACKING!')
                             M = n
                             T.goal_x = S
                             T.goal_y = J
     r = [n for n in Tx(100)]
     s[T.goal_x, T.goal_y] = 9
     U = 0
     if M != [n for n in Tx(100)]:
         for f in w:
             for p in M:
                 s[p[0], p[1]] = 1
             if f.x == T.goal_x and f.y == T.goal_y:
                 U += 0
             else:
                 if T.TJ(s, (T.goal_x, T.goal_y), (f.x, f.y)) == []:
                     U += 0
                 else:
                     if T.TJ(s, (T.goal_x, T.goal_y), (f.x, f.y)) == TB:
                         U += 0
                         if T.TJ(s, (N, L), (f.x, f.y)) != TB:
                             n = T.TJ(s, (N, L), (f.x, f.y))
                             if To(n) < To(r):
                                 r = n
                         else:
                             continue
                     else:
                         U += 1
         for p in M:
             s[p[0], p[1]] = 2
         s[T.goal_x, T.goal_y] = 9
         if U == 0:
             if r != [n for n in Tx(100)]:
                 M = r
                 U += 1
     if U == 0:
         for w in y:
             s[w, 0] = 0
             s[w, k - 1] = 0
         for h in p:
             s[0, h] = 0
             s[H - 1, h] = 0
         for s in P:
             s[s.x, s.y] = 1
         if To(game.snakes) > 1:
             for e in G:
                 s[e.x, e.y] = 1
         for f in w:
             if T.TJ(s, (N, L), (f.x, f.y)) == TB:
                 continue
             else:
                 n = T.TJ(s, (N, L), (f.x, f.y))
                 m = Ts
                 if To(n) < To(M):
                     M = n
                     T.goal_x = f.x
                     T.goal_y = f.y
     if M == [n for n in Tx(100)]:
         s[C, a] = 0
         if T.TJ(s, (N, L), (C, a)) == TB:
             TR('Cant find tail!')
         else:
             n = T.TJ(s, (N, L), (C, a))
             if To(n) > 1:
                 M = n
                 TR('Chasing tail!')
     s[C, a] = 1
     if M == [n for n in Tx(100)]:
         M = []
     if M == []:
         for h in p:
             for w in y:
                 c = T.TJ(s, (N, L), (w, h))
                 if c != TB and c != []:
                     TR('found')
                     if To(c) > To(M):
                         M = c
                         TR('PATH:', M)
     for Y, snake in Tb(game.snakes):
         if not snake.body:
             continue
         if Y == snake_idx:
             continue
         else:
             T.last_enemy_head_coord_x = S
             T.last_enemy_head_coord_y = J
     if M != []:
         j = M[-1]
         d = j[0]
         A = j[1]
         I = T.TP(d, A, N, L)
     else:
         TR()
         TR('DEAD!')
         TR()
     return I
Esempio n. 22
0
def create_experiment_1(overwrite: bool = True, show: bool = True):
    """
    Experiment 1 tests the generalization capabilities of the genomes based on the relative direction the target is
     placed.
    
    TRAINING
     Training is done in a maze where the robot is in the center, and the targets are positioned around the agent. Each
     run has a single target sampled. The targets all are positioned 6 meters from the robot's initial position.
    
    TESTING
     Testing is done similar as was the case for training, however, in this scenario only 20 targets are sampled (where
     there were 36 for training). Only 4 of these 20 sampled target positions overlap with the training set.
    """
    cfg = get_shared_config()

    # Fixed parameters
    ROBOT_INIT_ANGLE = pi / 2  # Looking up
    ROBOT_INIT_POS = Vec2d(cfg.game.x_axis / 2, cfg.game.y_axis /
                           2)  # Initial position of the drone

    # Create the training game
    spawn_f_train = SpawnSimple(game_config=cfg, train=True)
    for i in range(0, 360, 10):  # Positions circular in hops of 10 degree
        angle = i / 180 * pi
        offset_x = 6 * cos(angle)
        offset_y = 6 * sin(angle)
        spawn_f_train.add_location(
            (ROBOT_INIT_POS[0] + offset_x, ROBOT_INIT_POS[1] + offset_y))
    game = Game(
        config=cfg,
        player_noise=0,
        game_id=get_game_id(0, experiment_id=1),
        overwrite=overwrite,
        spawn_func=spawn_f_train,
        stop_if_reached=True,
        wall_bound=False,
    )
    game.player = Robot(game=game)
    game.set_player_init_angle(a=ROBOT_INIT_ANGLE)
    game.set_player_init_pos(p=ROBOT_INIT_POS)
    check_and_save_game(game, show=show)

    # Create the evaluation games, each of those only contains one target
    for i in range(1, 21):
        spawn_f_eval = SpawnSimple(game_config=cfg, train=False)
        angle = i / 10 * pi
        offset_x = 6 * cos(angle)
        offset_y = 6 * sin(angle)
        spawn_f_eval.add_location(
            (ROBOT_INIT_POS[0] + offset_x, ROBOT_INIT_POS[1] + offset_y))
        game = Game(
            config=cfg,
            player_noise=0,
            game_id=get_game_id(i, experiment_id=1),
            overwrite=overwrite,
            spawn_func=spawn_f_eval,
            stop_if_reached=True,
            wall_bound=False,
        )
        game.player = Robot(game=game)
        game.set_player_init_angle(a=ROBOT_INIT_ANGLE)
        game.set_player_init_pos(p=ROBOT_INIT_POS)
        check_and_save_game(game, show=show, randomize=False)
Esempio n. 23
0
            move = random.choice(grid.available_moves)
            return self._traverse_from(
                grid.grid_after_move(current_color, move),
                Color(1 - current_color))

    def _rollout_from(self,
                      grid: Grid,
                      color: Color,
                      last_col: Union[int, None] = None) -> bool:
        if len(grid.available_moves) == 0 or (last_col is None and self._judge.is_over(grid.state)) or \
                (last_col is not None and self._judge.is_over_after_move_in_col(grid.state, last_col)):
            return color != self._color

        move = random.choice(grid.available_moves)
        has_won = self._rollout_from(grid.grid_after_move(color, move),
                                     Color(1 - color), move)
        return has_won

    def _finishing_move_in(self, grid: Grid) -> Union[int, None]:
        for move in grid.available_moves:
            after_move = grid.grid_after_move(self._color, move)
            if self._judge.is_over_after_move_in_col(after_move.state, move):
                return move


if __name__ == '__main__':
    game = Game(Grid(), Judge(), MCTSPlayer(Color.RED, Judge(), 2, 1000),
                MCTSPlayer(Color.BLACK, Judge(), 5, 1000))

    print(game.play())