Esempio n. 1
0
 def choose_action(self, env, state):
     if self.room != state.r:
         self.room = state.r
         self.plan = None
     pos = (state.x, state.y)
     if self.plan is None or pos not in self.plan:
         priority_func = lambda s: manhattan_dist(s, env.goal)
         expand_partial = lambda s: expand_state(env.states, s)
         self.plan = search.best_first_graph_search(pos, env.goal, priority_func, expand_partial)
     for i, pathpos in enumerate(self.plan):
         if i == len(self.plan)-1:
             #print 'choose random option in door plan'
             return np.array([choice(env.actions)])
         elif pos == pathpos:
             fx,fy = self.plan[i+1]
             dx,dy = (fx-state.x, fy-state.y)
             #print 'move in direction',dx,dy,'for door plan'
             return np.array([env.movemap[dx,dy]])
Esempio n. 2
0
 def choose_action_parameterized(self, env, state, field, action):
     if self.room != state.r:
         self.room = state.r
         self.plan = None
     pos = (state.x, state.y)
     if self.plan is None or pos not in self.plan:
         key_pos = filter_states(env.states, field)
         # Not positive if this is right move here.
         if not key_pos:
             #print 'RANDOM action for plan', action
             return np.array([choice(env.actions)])
         priority_func = lambda s: manhattan_dist(s, key_pos[0])
         expand_partial = lambda s: expand_state(env.states, s)
         self.plan = search.best_first_graph_search(pos, key_pos[0], priority_func, expand_partial)
     for i, pathpos in enumerate(self.plan):
         if i == len(self.plan)-1:
             #print 'action', action, 'for plan', field
             return np.array([action])
         elif pos == pathpos:
             fx,fy = self.plan[i+1]
             dx,dy = (fx-state.x, fy-state.y)
             #print 'move', dx,dy, 'for plan', field
             return np.array([env.movemap[dx,dy]])