def _build_smarts(self): agent_interfaces = { agent_id: spec.interface for agent_id, spec in self._agent_specs.items() } envision = None if not self._headless or self._envision_record_data_replay_path: envision = Envision( endpoint=self._envision_endpoint, sim_name=self._sim_name, output_dir=self._envision_record_data_replay_path, headless=self._headless, ) sim = SMARTS( agent_interfaces=agent_interfaces, traffic_sim=SumoTrafficSimulation( headless=self._sumo_headless, time_resolution=self._fixed_timestep_sec, num_external_sumo_clients=self._num_external_sumo_clients, sumo_port=self._sumo_port, auto_start=self._sumo_auto_start, endless_traffic=self._endless_traffic, ), envision=envision, fixed_timestep_sec=self._fixed_timestep_sec, ) return sim
def __init__(self, config): self._config = config # XXX: These are intentionally left public at PyMARL's request self.n_agents = config.get("n_agents", 1) self.episode_limit = config.get("episode_limit", 1000) self.observation_space = config.get("observation_space", DEFAULT_OBSERVATION_SPACE) self.action_space = config.get("action_space", DEFAULT_ACTION_SPACE) self.state_space = config.get("state_space", DEFAULT_STATE_SPACE) self._agent_ids = ["Agent %i" % i for i in range(self.n_agents)] self._reward_adapter = config.get("reward_adapter", default_reward_adapter) self._observation_adapter = config.get("observation_adapter", default_obs_adapter) self._action_adapter = config.get("action_adapter", default_action_adapter) self._done_adapter = config.get("done_adapter", lambda dones: list(dones.values())) self._state_adapter = config.get("state_adapter", default_state_adapter) self._headless = config.get("headless", False) self._timestep_sec = config.get("timestep_sec", 0.01) self._observations = None self._state = None self._steps = 0 seed = self._config.get("seed", 42) smarts.core.seed(seed) self._scenarios_iterator = Scenario.scenario_variations( config["scenarios"], self._agent_ids) agent_interfaces = { agent_id: AgentInterface.from_type( config.get("agent_type", AgentType.Laner), max_episode_steps=self.episode_limit, debug=config.get("debug", False), ) for i, agent_id, in enumerate(self._agent_ids) } envision = None if not self._headless: envision = Envision( endpoint=config.get("envision_endpoint", None), output_dir=config.get("envision_record_data_replay_path", None), ) self._smarts = SMARTS( agent_interfaces=agent_interfaces, traffic_sim=SumoTrafficSimulation( time_resolution=self._timestep_sec), envision=envision, timestep_sec=self._timestep_sec, )
def main(scenarios, headless, seed): agent_spec = AgentSpec( interface=AgentInterface.from_type(AgentType.Laner, max_episode_steps=None), agent_builder=None, observation_adapter=None, ) smarts = SMARTS( agent_interfaces={}, traffic_sim=SumoTrafficSimulation(headless=True, auto_start=True), envision=Envision(), ) scenarios_iterator = Scenario.scenario_variations( scenarios, list([]), ) smarts.reset(next(scenarios_iterator)) for _ in range(5000): smarts.step({}) smarts.attach_sensors_to_vehicles( agent_spec, smarts.vehicle_index.social_vehicle_ids()) obs, _, _, _ = smarts.observe_from( smarts.vehicle_index.social_vehicle_ids())
def setup_smarts(self, headless: bool = True, seed: int = 42, time_ratio: float = 1.0): """Do the setup of the underlying SMARTS instance.""" assert not self._smarts if not self._state_publisher: raise RuntimeError("must call setup_ros() first.") self._zoo_module = rospy.get_param("~zoo_module", "zoo") headless = rospy.get_param("~headless", headless) seed = rospy.get_param("~seed", seed) time_ratio = rospy.get_param("~time_ratio", time_ratio) assert time_ratio > 0.0 self._time_ratio = time_ratio self._smarts = SMARTS( agent_interfaces={}, traffic_sim=None, fixed_timestep_sec=None, envision=None if headless else Envision(), external_provider=True, ) assert self._smarts.external_provider self._last_step_time = None with self._reset_lock: self._reset_msg = None self._scenario_path = None self._agents = {} self._agents_to_add = {}
def main(scenarios, headless, seed): scenarios_iterator = Scenario.scenario_variations(scenarios, []) for _ in scenarios: scenario = next(scenarios_iterator) agent_missions = scenario.discover_missions_of_traffic_histories() for agent_id, mission in agent_missions.items(): scenario.set_ego_missions({agent_id: mission}) agent_spec = AgentSpec( interface=AgentInterface.from_type(AgentType.Laner, max_episode_steps=None), agent_builder=KeepLaneAgent, ) agent = agent_spec.build_agent() smarts = SMARTS( agent_interfaces={agent_id: agent_spec.interface}, traffic_sim=SumoTrafficSimulation(headless=True, auto_start=True), envision=Envision(), ) observations = smarts.reset(scenario) dones = {agent_id: False} while not dones[agent_id]: agent_obs = observations[agent_id] agent_action = agent.act(agent_obs) observations, rewards, dones, infos = smarts.step( {agent_id: agent_action})
def __init__( self, scenarios: Sequence[str], agent_specs, shuffle_scenarios=True, headless=False, visdom=False, timestep_sec=0.1, seed=42, num_external_sumo_clients=0, sumo_headless=True, sumo_port=None, sumo_auto_start=True, endless_traffic=True, envision_endpoint=None, envision_record_data_replay_path=None, zoo_workers=None, auth_key=None, ): self._log = logging.getLogger(self.__class__.__name__) smarts.core.seed(seed) self._agent_specs = agent_specs self._dones_registered = 0 self._scenarios_iterator = Scenario.scenario_variations( scenarios, list(agent_specs.keys()), shuffle_scenarios, ) agent_interfaces = { agent_id: agent.interface for agent_id, agent in agent_specs.items() } envision_client = None if not headless: envision_client = Envision( endpoint=envision_endpoint, output_dir=envision_record_data_replay_path ) visdom_client = None if visdom: visdom_client = VisdomClient() self._smarts = SMARTS( agent_interfaces=agent_interfaces, traffic_sim=SumoTrafficSimulation( headless=sumo_headless, time_resolution=timestep_sec, num_external_sumo_clients=num_external_sumo_clients, sumo_port=sumo_port, auto_start=sumo_auto_start, endless_traffic=endless_traffic, ), envision=envision_client, visdom=visdom_client, timestep_sec=timestep_sec, zoo_workers=zoo_workers, auth_key=auth_key, )
def test_data_replay(agent_spec, scenarios_iterator, data_replay_path, monkeypatch): """We stub out the websocket the Envision client writes to and store the sent data. We do the same under Envision client's replay feature and compare that the data sent to the websocket is the same as before. """ def step_through_episodes(agent_spec, smarts, scenarios_iterator): for i in range(NUM_EPISODES): agent = agent_spec.build_agent() scenario = next(scenarios_iterator) obs = smarts.reset(scenario) done = False while not done: obs = agent_spec.observation_adapter(obs[AGENT_ID]) action = agent.act(obs) action = agent_spec.action_adapter(action) obs, _, dones, _ = smarts.step({AGENT_ID: action}) done = dones[AGENT_ID] # 1. Inspect sent data during SMARTS simulation # Mock WebSocketApp so we can inspect the websocket frames being sent FakeWebSocketApp, original_sent_data = fake_websocket_app_class() monkeypatch.setattr(websocket, "WebSocketApp", FakeWebSocketApp) assert original_sent_data.qsize() == 0 envision = Envision(output_dir=data_replay_path) smarts = SMARTS( agent_interfaces={AGENT_ID: agent_spec.interface}, traffic_sim=SumoTrafficSimulation(time_resolution=TIMESTEP_SEC), envision=envision, timestep_sec=TIMESTEP_SEC, ) step_through_episodes(agent_spec, smarts, scenarios_iterator) smarts.destroy() data_replay_path = Path(data_replay_path) data_replay_run_paths = [x for x in data_replay_path.iterdir() if x.is_dir()] assert len(data_replay_run_paths) == 1 jsonl_paths = list(data_replay_run_paths[0].glob("*.jsonl")) assert len(jsonl_paths) == 1 assert original_sent_data.qsize() > 0 # 2. Inspect replay data # Mock WebSocketApp so we can inspect the websocket frames being sent FakeWebSocketApp, new_sent_data = fake_websocket_app_class() monkeypatch.setattr(websocket, "WebSocketApp", FakeWebSocketApp) assert new_sent_data.qsize() == 0 # Now read data replay Envision.read_and_send(jsonl_paths[0], timestep_sec=TIMESTEP_SEC) # Verify the new data matches the original data assert original_sent_data.qsize() == new_sent_data.qsize() for _ in range(new_sent_data.qsize()): assert original_sent_data.get() == new_sent_data.get()
def __init__( self, scenarios: Sequence[str], agent_specs, visdom=False, headless=False, timestep_sec=0.1, seed=42, num_external_sumo_clients=0, sumo_headless=True, sumo_port=None, sumo_auto_start=True, endless_traffic=True, envision_endpoint=None, envision_record_data_replay_path=None, ): self._log = logging.getLogger(self.__class__.__name__) smarts.core.seed(seed) self._visdom_obs_queue = None if visdom: self._log.debug("Running with visdom") self._visdom_obs_queue = build_visdom_watcher_queue() self._agent_specs = agent_specs self._dones_registered = 0 self._scenarios_iterator = Scenario.scenario_variations( scenarios, list(agent_specs.keys()), ) agent_interfaces = { agent_id: agent.interface for agent_id, agent in agent_specs.items() } envision = None if not headless: envision = Envision(endpoint=envision_endpoint, output_dir=envision_record_data_replay_path) self._smarts = SMARTS( agent_interfaces=agent_interfaces, traffic_sim=SumoTrafficSimulation( headless=sumo_headless, time_resolution=timestep_sec, num_external_sumo_clients=num_external_sumo_clients, sumo_port=sumo_port, auto_start=sumo_auto_start, endless_traffic=endless_traffic, ), envision=envision, timestep_sec=timestep_sec, )
def main(scenarios: Sequence[str], headless: bool, seed: int): agent_spec = AgentSpec( interface=AgentInterface.from_type(AgentType.Laner, max_episode_steps=None), agent_builder=None, observation_adapter=None, ) smarts = SMARTS( agent_interfaces={}, traffic_sim=SumoTrafficSimulation(headless=headless, auto_start=True), envision=None if headless else Envision(), ) scenarios_iterator = Scenario.scenario_variations( scenarios, list([]), ) scenario = next(scenarios_iterator) obs = smarts.reset(scenario) collected_data = {} _record_data(smarts.elapsed_sim_time, obs, collected_data) # could also include "motorcycle" or "truck" in this set if desired vehicle_types = frozenset({"car"}) while True: smarts.step({}) current_vehicles = smarts.vehicle_index.social_vehicle_ids( vehicle_types=vehicle_types) if collected_data and not current_vehicles: print("no more vehicles. exiting...") break smarts.attach_sensors_to_vehicles(agent_spec, current_vehicles) obs, _, _, dones = smarts.observe_from(current_vehicles) _record_data(smarts.elapsed_sim_time, obs, collected_data) # an example of how we might save the data per car for car, data in collected_data.items(): outfile = f"data_{scenario.name}_{scenario.traffic_history.name}_{car}.pkl" with open(outfile, "wb") as of: pickle.dump(data, of) smarts.destroy()
def main(scenarios, headless, seed): scenarios_iterator = Scenario.scenario_variations(scenarios, []) smarts = SMARTS( agent_interfaces={}, traffic_sim=None, envision=None if headless else Envision(), ) for _ in scenarios: scenario = next(scenarios_iterator) agent_missions = scenario.discover_missions_of_traffic_histories() for agent_id, mission in agent_missions.items(): agent_spec = AgentSpec( interface=AgentInterface.from_type(AgentType.LanerWithSpeed, max_episode_steps=None), agent_builder=KeepLaneAgent, agent_params=scenario.traffic_history_target_speed, ) agent = agent_spec.build_agent() # Take control of vehicle with corresponding agent_id smarts.switch_ego_agent({agent_id: agent_spec.interface}) # tell the traffic history provider to start traffic # at the point when this agent enters... traffic_history_provider = smarts.get_provider_by_type( TrafficHistoryProvider) assert traffic_history_provider traffic_history_provider.start_time = mission.start_time # agent vehicle will enter right away... modified_mission = replace(mission, start_time=0.0) scenario.set_ego_missions({agent_id: modified_mission}) observations = smarts.reset(scenario) dones = {agent_id: False} while not dones.get(agent_id, True): agent_obs = observations[agent_id] agent_action = agent.act(agent_obs) observations, rewards, dones, infos = smarts.step( {agent_id: agent_action}) smarts.destroy()
def main(scenarios, headless, seed): agent_spec = AgentSpec( interface=AgentInterface.from_type(AgentType.Laner, max_episode_steps=None), agent_builder=None, observation_adapter=None, ) smarts = SMARTS( agent_interfaces={}, traffic_sim=SumoTrafficSimulation(headless=headless, auto_start=True), envision=None if headless else Envision(), ) scenarios_iterator = Scenario.scenario_variations( scenarios, list([]), ) smarts.reset(next(scenarios_iterator)) prev_vehicles = set() done_vehicles = set() for _ in range(5000): smarts.step({}) current_vehicles = smarts.vehicle_index.social_vehicle_ids() # We explicitly watch for which agent/vehicles left the simulation here # since we don't have a "done criteria" that detects when a vehicle's # traffic history has played itself out. done_vehicles = prev_vehicles - current_vehicles prev_vehicles = current_vehicles smarts.attach_sensors_to_vehicles(agent_spec, current_vehicles) obs, _, _, dones = smarts.observe_from(current_vehicles) # The `dones` returned above should be empty for traffic histories # where all vehicles are assumed to stay on the road and not collide. # TODO: add the following assert once the maps are accurate enough that # we don't have any agents accidentally go off-road. # assert not done for v in done_vehicles: dones[f"Agent-{v}"] = True # TODO: save observations for imitation learning smarts.destroy()
def setup_smarts( self, headless: bool = True, seed: int = 42, time_ratio: float = 1.0, sumo_traffic: bool = False, ): """Do the setup of the underlying SMARTS instance.""" assert not self._smarts if not self._state_publisher: raise RuntimeError("must call setup_ros() first.") self._zoo_module = rospy.get_param("~zoo_module", "zoo") headless = rospy.get_param("~headless", headless) seed = rospy.get_param("~seed", seed) time_ratio = rospy.get_param("~time_ratio", time_ratio) assert time_ratio > 0.0 self._time_ratio = time_ratio traffic_sim = None if rospy.get_param("~sumo_traffic", sumo_traffic): from smarts.core.sumo_traffic_simulation import SumoTrafficSimulation # Note that Sumo uses a fixed timestep, so if we have a highly-variable step rate, # we may want to set time_resolution to a mutiple of the target_freq? time_resolution = 1.0 / self._target_freq if self._target_freq else None traffic_sim = SumoTrafficSimulation( headless=headless, time_resolution=time_resolution, ) self._smarts = SMARTS( agent_interfaces={}, traffic_sim=traffic_sim, fixed_timestep_sec=None, envision=None if headless else Envision(), external_provider=True, ) assert self._smarts.external_provider self._last_step_time = None
def main(scenarios, headless, seed): scenarios_iterator = Scenario.scenario_variations(scenarios, []) smarts = SMARTS( agent_interfaces={}, traffic_sim=SumoTrafficSimulation(headless=True, auto_start=True), envision=Envision(), ) for _ in scenarios: scenario = next(scenarios_iterator) agent_missions = scenario.discover_missions_of_traffic_histories() for agent_id, mission in agent_missions.items(): agent_spec = AgentSpec( interface=AgentInterface.from_type(AgentType.Laner, max_episode_steps=None), agent_builder=KeepLaneAgent, ) agent = agent_spec.build_agent() smarts.switch_ego_agent({agent_id: agent_spec.interface}) # required: get traffic_history_provider and set time offset traffic_history_provider = smarts.get_provider_by_type( TrafficHistoryProvider) assert traffic_history_provider traffic_history_provider.set_start_time(mission.start_time) modified_mission = replace(mission, start_time=0.0) scenario.set_ego_missions({agent_id: modified_mission}) observations = smarts.reset(scenario) dones = {agent_id: False} while not dones[agent_id]: agent_obs = observations[agent_id] agent_action = agent.act(agent_obs) observations, rewards, dones, infos = smarts.step( {agent_id: agent_action}) smarts.destroy()
def main( script: str, scenarios: Sequence[str], headless: bool, envision_record_data_replay_path: str, seed: int, vehicles_to_replace_randomly: int, min_timestep_count: int, positional_radius: int, episodes: int, ): assert episodes > 0 logger = logging.getLogger(script) logger.setLevel(logging.INFO) logger.debug("initializing SMARTS") envision_client = None if not headless or envision_record_data_replay_path: envision_client = Envision(output_dir=envision_record_data_replay_path) smarts = SMARTS( agent_interfaces={}, traffic_sim=None, envision=envision_client, ) random_seed(seed) scenarios_iterator = Scenario.scenario_variations(scenarios, []) scenario = next(scenarios_iterator) for episode in range(episodes): logger.info(f"starting episode {episode}...") def should_trigger(ctx: Dict[str, Any]) -> bool: return ctx["elapsed_sim_time"] > 2 def on_trigger(ctx: Dict[str, Any]): # Define agent specs to be assigned agent_spec = AgentSpec( interface=AgentInterface(waypoints=True, action=ActionSpaceType.Lane), agent_builder=BasicAgent, ) # Select a random sample from candidates k = ctx.get("vehicles_to_replace_randomly", 0) if k <= 0: logger.warning( "default (0) or negative value specified for replacement. Replacing all valid vehicle candidates." ) sample = ctx["vehicle_candidates"] else: logger.info( f"Choosing {k} vehicles randomly from {len(ctx['vehicle_candidates'])} valid vehicle candidates." ) sample = random.sample(ctx["vehicle_candidates"], k) assert len(sample) != 0 for veh_id in sample: # Map selected vehicles to agent ids & specs agent_id = f"agent-{veh_id}" ctx["agents"][agent_id] = agent_spec.build_agent() # Create missions based on current state and traffic history positional, traverse = scenario.create_dynamic_traffic_history_mission( veh_id, ctx["elapsed_sim_time"], ctx["positional_radius"] ) # Take control of vehicles immediately try: # Try to assign a PositionalGoal at the last recorded timestep smarts.add_agent_and_switch_control( veh_id, agent_id, agent_spec.interface, positional ) except PlanningError: logger.warning( f"Unable to create PositionalGoal for vehicle {veh_id}, falling back to TraverseGoal" ) smarts.add_agent_and_switch_control( veh_id, agent_id, agent_spec.interface, traverse ) # Create a table of vehicle trajectory lengths, filtering out non-moving vehicles vehicle_candidates = [] for v_id in (str(id) for id in scenario.traffic_history.all_vehicle_ids()): traj = list(scenario.traffic_history.vehicle_trajectory(v_id)) # Find moving vehicles with more than the minimum number of timesteps if [row for row in traj if row.speed != 0] and len( traj ) >= min_timestep_count: vehicle_candidates.append(v_id) assert len(vehicle_candidates) > 0 k = vehicles_to_replace_randomly if k > len(vehicle_candidates): logger.warning( f"vehicles_to_replace_randomly={k} is greater than the number of vehicle candidates ({len(vehicle_candidates)})." ) k = len(vehicle_candidates) # Initialize trigger and define initial context context = { "agents": {}, "elapsed_sim_time": 0.0, "vehicle_candidates": vehicle_candidates, "vehicles_to_replace_randomly": k, "positional_radius": positional_radius, } trigger = Trigger(should_trigger, on_trigger) dones = {} observations = smarts.reset(scenario) while not dones or not all(dones.values()): # Update context context["elapsed_sim_time"] = smarts.elapsed_sim_time # Step trigger to further update context trigger.update(context) # Get agents from current context agents = context["agents"] # Step simulation actions = { agent_id: agents[agent_id].act(agent_obs) for agent_id, agent_obs in observations.items() } logger.debug( f"stepping @ sim_time={smarts.elapsed_sim_time} for agents={list(observations.keys())}..." ) observations, rewards, dones, infos = smarts.step(actions) for agent_id in agents.keys(): if dones.get(agent_id, False): if not observations[agent_id].events.reached_goal: logger.warning( f"agent_id={agent_id} exited @ sim_time={smarts.elapsed_sim_time}" ) logger.warning(f" ... with {observations[agent_id].events}") else: logger.info( f"agent_id={agent_id} reached goal @ sim_time={smarts.elapsed_sim_time}" ) logger.debug(f" ... with {observations[agent_id].events}") del observations[agent_id] smarts.destroy()
def __init__( self, scenarios: Sequence[str], agent_specs: Dict[str, AgentSpec], sim_name: Optional[str] = None, shuffle_scenarios: bool = True, headless: bool = True, visdom: bool = False, fixed_timestep_sec: Optional[float] = None, seed: int = 42, num_external_sumo_clients: int = 0, sumo_headless: bool = True, sumo_port: Optional[str] = None, sumo_auto_start: bool = True, endless_traffic: bool = True, envision_endpoint: Optional[str] = None, envision_record_data_replay_path: Optional[str] = None, zoo_addrs: Optional[str] = None, timestep_sec: Optional[ float ] = None, # for backwards compatibility (deprecated) ): """ Args: scenarios (Sequence[str]): A list of scenario directories that will be simulated. agent_specs (Dict[str, AgentSpec]): Specification of the agents that will run in the environment. sim_name (Optional[str], optional): Simulation name. Defaults to None. shuffle_scenarios (bool, optional): If true, order of scenarios will be randomized, else it will be maintained. Defaults to True. headless (bool, optional): If True, disables visualization in Envision. Defaults to False. visdom (bool, optional): If True, enables visualization of observed RGB images in Visdom. Defaults to False. fixed_timestep_sec (Optional[float], optional): Step duration for all components of the simulation. May be None if time deltas are externally-driven. Defaults to None. seed (int, optional): Random number generator seed. Defaults to 42. num_external_sumo_clients (int, optional): Number of SUMO clients beyond SMARTS. Defaults to 0. sumo_headless (bool, optional): If True, disables visualization in SUMO GUI. Defaults to True. sumo_port (Optional[str], optional): SUMO port. Defaults to None. sumo_auto_start (bool, optional): Automatic starting of SUMO. Defaults to True. endless_traffic (bool, optional): SUMO's endless traffic setting. Defaults to True. envision_endpoint (Optional[str], optional): Envision's uri. Defaults to None. envision_record_data_replay_path (Optional[str], optional): Envision's data replay output directory. Defaults to None. zoo_addrs (Optional[str], optional): List of (ip, port) tuples of zoo server, used to instantiate remote social agents. Defaults to None. timestep_sec (Optional[float], optional): [description]. Defaults to None. """ self._log = logging.getLogger(self.__class__.__name__) self.seed(seed) if timestep_sec and not fixed_timestep_sec: warnings.warn( "timestep_sec has been deprecated in favor of fixed_timestep_sec. Please update your code.", category=DeprecationWarning, ) if not fixed_timestep_sec: fixed_timestep_sec = timestep_sec or 0.1 self._agent_specs = agent_specs self._dones_registered = 0 self._scenarios_iterator = Scenario.scenario_variations( scenarios, list(agent_specs.keys()), shuffle_scenarios, ) agent_interfaces = { agent_id: agent.interface for agent_id, agent in agent_specs.items() } envision_client = None if not headless or envision_record_data_replay_path: envision_client = Envision( endpoint=envision_endpoint, sim_name=sim_name, output_dir=envision_record_data_replay_path, headless=headless, ) visdom_client = None if visdom: visdom_client = VisdomClient() all_sumo = Scenario.supports_traffic_simulation(scenarios) traffic_sim = None if not all_sumo: # We currently only support the Native SUMO Traffic Provider and Social Agents for SUMO maps if zoo_addrs: warnings.warn("`zoo_addrs` can only be used with SUMO scenarios") zoo_addrs = None warnings.warn( "We currently only support the Native SUMO Traffic Provider and Social Agents for SUMO maps." "All scenarios passed need to be of SUMO, to enable SUMO Traffic Simulation and Social Agents." ) pass else: from smarts.core.sumo_traffic_simulation import SumoTrafficSimulation traffic_sim = SumoTrafficSimulation( headless=sumo_headless, time_resolution=fixed_timestep_sec, num_external_sumo_clients=num_external_sumo_clients, sumo_port=sumo_port, auto_start=sumo_auto_start, endless_traffic=endless_traffic, ) zoo_addrs = zoo_addrs self._smarts = SMARTS( agent_interfaces=agent_interfaces, traffic_sim=traffic_sim, envision=envision_client, visdom=visdom_client, fixed_timestep_sec=fixed_timestep_sec, zoo_addrs=zoo_addrs, )
def __init__( self, scenarios: Sequence[str], agent_specs: Dict[str, AgentSpec], sim_name=None, shuffle_scenarios=True, headless=False, visdom=False, fixed_timestep_sec=None, seed=42, num_external_sumo_clients=0, sumo_headless=True, sumo_port=None, sumo_auto_start=True, endless_traffic=True, envision_endpoint=None, envision_record_data_replay_path=None, zoo_addrs=None, timestep_sec=None, # for backwards compatibility (deprecated) ): self._log = logging.getLogger(self.__class__.__name__) self.seed(seed) if timestep_sec and not fixed_timestep_sec: warnings.warn( "timestep_sec has been deprecated in favor of fixed_timestep_sec. Please update your code.", category=DeprecationWarning, ) if not fixed_timestep_sec: fixed_timestep_sec = timestep_sec or 0.1 self._agent_specs = agent_specs self._dones_registered = 0 self._scenarios_iterator = Scenario.scenario_variations( scenarios, list(agent_specs.keys()), shuffle_scenarios, ) agent_interfaces = { agent_id: agent.interface for agent_id, agent in agent_specs.items() } envision_client = None if not headless or envision_record_data_replay_path: envision_client = Envision( endpoint=envision_endpoint, sim_name=sim_name, output_dir=envision_record_data_replay_path, headless=headless, ) visdom_client = None if visdom: visdom_client = VisdomClient() all_sumo = Scenario.supports_traffic_simulation(scenarios) traffic_sim = None if not all_sumo: # We currently only support the Native SUMO Traffic Provider and Social Agents for SUMO maps if zoo_addrs: warnings.warn( "`zoo_addrs` can only be used with SUMO scenarios") zoo_addrs = None warnings.warn( "We currently only support the Native SUMO Traffic Provider and Social Agents for SUMO maps." "All scenarios passed need to be of SUMO, to enable SUMO Traffic Simulation and Social Agents." ) pass else: from smarts.core.sumo_traffic_simulation import SumoTrafficSimulation traffic_sim = SumoTrafficSimulation( headless=sumo_headless, time_resolution=fixed_timestep_sec, num_external_sumo_clients=num_external_sumo_clients, sumo_port=sumo_port, auto_start=sumo_auto_start, endless_traffic=endless_traffic, ) zoo_addrs = zoo_addrs self._smarts = SMARTS( agent_interfaces=agent_interfaces, traffic_sim=traffic_sim, envision=envision_client, visdom=visdom_client, fixed_timestep_sec=fixed_timestep_sec, zoo_addrs=zoo_addrs, )
def main(script: str, scenarios: Sequence[str], headless: bool, seed: int): logger = logging.getLogger(script) logger.setLevel(logging.INFO) agent_spec = AgentSpec( interface=AgentInterface.from_type(AgentType.Laner, max_episode_steps=None), agent_builder=None, observation_adapter=None, ) smarts = SMARTS( agent_interfaces={}, traffic_sim=SumoTrafficSimulation(headless=headless, auto_start=True), envision=None if headless else Envision(), ) scenario_list = Scenario.get_scenario_list(scenarios) scenarios_iterator = Scenario.variations_for_all_scenario_roots(scenario_list, []) for scenario in scenarios_iterator: obs = smarts.reset(scenario) collected_data = {} _record_data(smarts.elapsed_sim_time, obs, collected_data) # could also include "motorcycle" or "truck" in this set if desired vehicle_types = frozenset({"car"}) # filter off-road vehicles from observations vehicles_off_road = set() while True: smarts.step({}) current_vehicles = smarts.vehicle_index.social_vehicle_ids( vehicle_types=vehicle_types ) if collected_data and not current_vehicles: print("no more vehicles. exiting...") break for veh_id in current_vehicles: try: smarts.attach_sensors_to_vehicles(agent_spec.interface, {veh_id}) except ControllerOutOfLaneException: logger.warning(f"{veh_id} out of lane, skipped attaching sensors") vehicles_off_road.add(veh_id) valid_vehicles = {v for v in current_vehicles if v not in vehicles_off_road} obs, _, _, dones = smarts.observe_from(valid_vehicles) _record_data(smarts.elapsed_sim_time, obs, collected_data) # an example of how we might save the data per car observation_folder = "collected_observations" if not os.path.exists(observation_folder): os.makedirs(observation_folder) for car, data in collected_data.items(): outfile = f"{observation_folder}/{scenario.name}_{scenario.traffic_history.name}_{car}.pkl" with open(outfile, "wb") as of: pickle.dump(data, of) smarts.destroy()
def __init__(self, scenarios: Sequence[str], agent_specs: Dict, shuffle_scenarios=True, headless=False, visdom=False, timestep_sec=0.1, seed=42, num_external_sumo_clients=0, sumo_headless=True, sumo_port=None, sumo_auto_start=True, endless_traffic=True, envision_endpoint=None, envision_record_data_replay_path=None, zoo_addrs=None): self._metircs = Metric(1) self.has_connection = False self._log = logging.getLogger(self.__class__.__name__) smarts.core.seed(seed) # Set seed for np and random module. self._agent_specs = agent_specs self._dones_registered = 0 # Setup ego. self._ego = agent_specs[EGO_ID].build_agent() # Setup sceanrios for benchmark. self._scenarios_iterator = Scenario.scenario_variations( scenarios, list(agent_specs.keys()), shuffle_scenarios, ) # Setup envision and visdom. envision_client = None if not headless: envision_client = Envision( endpoint=envision_endpoint, output_dir=envision_record_data_replay_path) visdom_client = None if visdom: visdom_client = VisdomClient() # Setup SMARTS agent_interfaces = { agent_id: agent.interface for agent_id, agent in agent_specs.items() } self._smarts = SMARTS( agent_interfaces=agent_interfaces, traffic_sim=SumoTrafficSimulation( headless=sumo_headless, time_resolution=timestep_sec, num_external_sumo_clients=num_external_sumo_clients, sumo_port=sumo_port, auto_start=sumo_auto_start, endless_traffic=endless_traffic, ), envision=envision_client, visdom=visdom_client, timestep_sec=timestep_sec, zoo_addrs=zoo_addrs)
def main( script: str, scenarios: Sequence[str], headless: bool, seed: int, vehicles_to_replace: int, episodes: int, ): assert vehicles_to_replace > 0 assert episodes > 0 logger = logging.getLogger(script) logger.setLevel(logging.INFO) logger.debug("initializing SMARTS") smarts = SMARTS( agent_interfaces={}, traffic_sim=None, envision=None if headless else Envision(), ) random_seed(seed) traffic_history_provider = smarts.get_provider_by_type( TrafficHistoryProvider) assert traffic_history_provider scenario_list = Scenario.get_scenario_list(scenarios) scenarios_iterator = Scenario.variations_for_all_scenario_roots( scenario_list, []) for scenario in scenarios_iterator: logger.debug("working on scenario {}".format(scenario.name)) veh_missions = scenario.discover_missions_of_traffic_histories() if not veh_missions: logger.warning("no vehicle missions found for scenario {}.".format( scenario.name)) continue veh_start_times = { v_id: mission.start_time for v_id, mission in veh_missions.items() } k = vehicles_to_replace if k > len(veh_missions): logger.warning( "vehicles_to_replace={} is greater than the number of vehicle missions ({})." .format(vehicles_to_replace, len(veh_missions))) k = len(veh_missions) # XXX replace with AgentSpec appropriate for IL model agent_spec = AgentSpec( interface=AgentInterface.from_type(AgentType.Imitation), agent_builder=ReplayCheckerAgent, agent_params=smarts.fixed_timestep_sec, ) for episode in range(episodes): logger.info(f"starting episode {episode}...") agentid_to_vehid = {} agent_interfaces = {} # Build the Agents for the to-be-hijacked vehicles # and gather their missions agents = {} dones = {} ego_missions = {} sample = {} if scenario.traffic_history.dataset_source == "Waymo": # For Waymo, we only hijack the vehicle that was autonomous in the dataset waymo_ego_id = scenario.traffic_history.ego_vehicle_id if waymo_ego_id is not None: assert ( k == 1 ), f"do not specify -k > 1 when just hijacking Waymo ego vehicle (it was {k})" veh_id = str(waymo_ego_id) sample = {veh_id} else: logger.warning( f"Waymo ego vehicle id not mentioned in the dataset. Hijacking a random vehicle." ) if not sample: # For other datasets, hijack a sample of the recorded vehicles # Pick k vehicle missions to hijack with agent # and figure out which one starts the earliest sample = scenario.traffic_history.random_overlapping_sample( veh_start_times, k) if len(sample) < k: logger.warning( f"Unable to choose {k} overlapping missions. allowing non-overlapping." ) leftover = set(veh_start_times.keys()) - sample sample.update(set(random.sample(leftover, k - len(sample)))) agent_spec.interface.max_episode_steps = max([ scenario.traffic_history.vehicle_final_exit_time(veh_id) / 0.1 for veh_id in sample ]) history_start_time = None logger.info(f"chose vehicles: {sample}") for veh_id in sample: agent_id = f"ego-agent-IL-{veh_id}" agentid_to_vehid[agent_id] = veh_id agent_interfaces[agent_id] = agent_spec.interface if (not history_start_time or veh_start_times[veh_id] < history_start_time): history_start_time = veh_start_times[veh_id] for agent_id in agent_interfaces.keys(): agent = agent_spec.build_agent() veh_id = agentid_to_vehid[agent_id] agent.load_data_for_vehicle(veh_id, scenario, history_start_time) agents[agent_id] = agent dones[agent_id] = False mission = veh_missions[veh_id] ego_missions[agent_id] = replace( mission, start_time=mission.start_time - history_start_time) # Tell the traffic history provider to start traffic # at the point when the earliest agent enters... traffic_history_provider.start_time = history_start_time # and all the other agents to offset their missions by this much too scenario.set_ego_missions(ego_missions) logger.info(f"offsetting sim_time by: {history_start_time}") # Take control of vehicles with corresponding agent_ids smarts.switch_ego_agents(agent_interfaces) # Finally start the simulation loop... logger.info(f"starting simulation loop...") observations = smarts.reset(scenario) while not all(done for done in dones.values()): actions = { agent_id: agents[agent_id].act(agent_obs) for agent_id, agent_obs in observations.items() } logger.debug("stepping @ sim_time={} for agents={}...".format( smarts.elapsed_sim_time, list(observations.keys()))) observations, rewards, dones, infos = smarts.step(actions) for agent_id in agents.keys(): if dones.get(agent_id, False): if not observations[agent_id].events.reached_goal: logger.warning( "agent_id={} exited @ sim_time={}".format( agent_id, smarts.elapsed_sim_time)) logger.warning(" ... with {}".format( observations[agent_id].events)) else: logger.info( "agent_id={} reached goal @ sim_time={}". format(agent_id, smarts.elapsed_sim_time)) logger.debug(" ... with {}".format( observations[agent_id].events)) del observations[agent_id] smarts.destroy()
def __init__(self, all_args): self.all_args = all_args self._dones_registered = 0 self.neighbor_num = all_args.neighbor_num self.rews_mode = all_args.rews_mode self.n_agents = all_args.num_agents self.use_proximity = all_args.use_proximity self.use_discrete = all_args.use_discrete # default True self.use_centralized_V = all_args.use_centralized_V self.scenarios = [(all_args.scenario_path + all_args.scenario_name)] self.agent_ids = ["Agent %i" % i for i in range(self.n_agents)] self.obs_space_dict = self.get_obs_space_dict() self.obs_dim = self.get_obs_dim() # ! TODO: self.share_obs_dim = self.get_state_dim( ) if self.use_centralized_V else self.get_obs_dim() self.observation_space = [ gym.spaces.Box(low=-1e10, high=1e10, shape=(self.obs_dim, )) ] * self.n_agents self.share_observation_space = [ gym.spaces.Box(low=-1e10, high=1e10, shape=(self.share_obs_dim, )) ] * self.n_agents if self.use_discrete: self.act_dim = 4 self.action_space = [gym.spaces.Discrete(self.act_dim) ] * self.n_agents self.agent_type = AgentType.Vulner_with_proximity if self.use_proximity else AgentType.Vulner else: # TODO Add continous action space self.agent_type = AgentType.VulnerCon_with_proximity if self.use_proximity else AgentType.VulnerCon raise NotImplementedError self._agent_specs = { agent_id: AgentSpec( interface=AgentInterface.from_type( self.agent_type, max_episode_steps=all_args.horizon), observation_adapter=self.get_obs_adapter(), reward_adapter=self.get_rew_adapter(self.rews_mode, self.neighbor_num), action_adapter=self.get_act_adapter(), ) for agent_id in self.agent_ids } self._scenarios_iterator = Scenario.scenario_variations( self.scenarios, list(self._agent_specs.keys()), all_args.shuffle_scenarios, ) self.agent_interfaces = { agent_id: agent.interface for agent_id, agent in self._agent_specs.items() } self.envision_client = None if not all_args.headless: self.envision_client = Envision( endpoint=all_args.envision_endpoint, output_dir=all_args.envision_record_data_replay_path) self.visdom_client = None if all_args.visdom: self.visdom_client = VisdomClient() self._smarts = SMARTS( agent_interfaces=self.agent_interfaces, traffic_sim=SumoTrafficSimulation( headless=all_args.sumo_headless, time_resolution=all_args.timestep_sec, num_external_sumo_clients=all_args.num_external_sumo_clients, sumo_port=all_args.sumo_port, auto_start=all_args.sumo_auto_start, endless_traffic=all_args.endless_traffic, ), envision=self.envision_client, visdom=self.visdom_client, timestep_sec=all_args.timestep_sec, zoo_workers=all_args.zoo_workers, auth_key=all_args.auth_key, )