Esempio n. 1
0
    def test_prepare_metadata(self):
        f = write_files({'first.txt': 'test', 'second.txt': 'test2'})

        class FauxDriver(drivers.DatasetDriver):
            def to_band(self, dataset, path):
                numbers = {
                    'first': ptype.BandMetadata(path=path, number='1'),
                    'second': None
                }
                return numbers.get(path.stem)

            def get_ga_label(self, dataset):
                return 'DATASET_ID_1234'

            def get_id(self):
                return 'faux'

        d = ptype.DatasetMetadata()
        d = package.expand_driver_metadata(FauxDriver(), d, list(f.iterdir()))

        self.assert_same(
            d,
            ptype.DatasetMetadata(
                id_=d.id_,
                ga_label='DATASET_ID_1234',
                product_type='faux',
                size_bytes=9,
                image=ptype.ImageMetadata(
                    bands={
                        '1':
                        ptype.BandMetadata(path=f.joinpath('first.txt'),
                                           number='1')
                    })))
    def to_band(self, dataset, path):
        """
        :type dataset: ptype.DatasetMetadata
        :type path: pathlib.Path
        :rtype: ptype.BandMetadata

        >>> OrthoDriver().to_band(None, Path('/tmp/out/LT51030782005002ASA00_B3.TIF'))
        BandMetadata(path=PosixPath('/tmp/out/LT51030782005002ASA00_B3.TIF'), number='3')
        >>> OrthoDriver().to_band(None, Path('/tmp/out/LC81090852015088LGN00_B10.tif'))
        BandMetadata(path=PosixPath('/tmp/out/LC81090852015088LGN00_B10.tif'), number='10')
        >>> OrthoDriver().to_band(None, Path('/data/output/LE70900782007292ASA00_B6_VCID_2.TIF'))
        BandMetadata(path=PosixPath('/data/output/LE70900782007292ASA00_B6_VCID_2.TIF'), number='6_vcid_2')
        >>> # No bands for non-tiff files.
        >>> OrthoDriver().to_band(None, Path('/tmp/out/LC81090852015088LGN00_MTL.txt'))
        >>> OrthoDriver().to_band(None, Path('/tmp/out/passinfo'))
        >>> # A DEM image -- not included as a band.
        >>> OrthoDriver().to_band(None, Path('LT05_L1TP_108078_20060703_20170309_01_T1_DEM.TIF'))
        """
        if path.suffix.lower() != '.tif':
            return None

        name = path.stem.lower()

        # A DEM image -- the only tif without a 'B' prefix.
        # We don't include it in the list of bands according to Lan-Wei, as it's not part of a typical USGS package.
        if name.endswith('_dem'):
            return None

        # Images end in a band number (eg '_B12.tif'). Extract it.
        position = name.rfind('_b')
        if position == -1:
            raise ValueError('Unexpected tif image in level1: %r' % path)
        band_number = name[position + 2:]

        return ptype.BandMetadata(path=path, number=band_number)
    def to_band(self, dataset, path):
        """
        :type dataset: ptype.DatasetMetadata
        :type path: Path
        :param path: The filename of the input file.
        :rtype: ptype.BandMetadata
        """
        if path.suffix != '.tif':
            return None

        return ptype.BandMetadata(path=path, number='pqa')
Esempio n. 4
0
 def test_eods_fill_metadata(self):
     dataset_folder = "LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012"
     bandname = '10'
     bandfile = dataset_folder + '_B' + bandname + '.tif'
     input_folder = write_files({
         dataset_folder: {
             'metadata.xml': """<EODS_DATASET>
             <ACQUISITIONINFORMATION>
             <EVENT>
             <AOS>20141012T03:23:36</AOS>
             <LOS>20141012T03:29:10</LOS>
             </EVENT>
             </ACQUISITIONINFORMATION>
             <EXEXTENT>
             <TEMPORALEXTENTFROM>20141012 00:55:54</TEMPORALEXTENTFROM>
             <TEMPORALEXTENTTO>20141012 00:56:18</TEMPORALEXTENTTO>
             </EXEXTENT>
             </EODS_DATASET>""",
             'scene01': {
                 bandfile: ''
             }
         }
     })
     expected = ptype.DatasetMetadata(
         id_=_EXPECTED_NBAR.id_,
         ga_label=dataset_folder,
         ga_level='P54',
         product_type='EODS_NBAR',
         platform=ptype.PlatformMetadata(code='LANDSAT_8'),
         instrument=ptype.InstrumentMetadata(name='OLI_TIRS'),
         format_=ptype.FormatMetadata(name='GeoTiff'),
         acquisition=ptype.AcquisitionMetadata(aos=datetime.datetime(2014, 10, 12, 3, 23, 36),
                                               los=datetime.datetime(2014, 10, 12, 3, 29, 10),
                                               groundstation=ptype.GroundstationMetadata(code='LGS')),
         extent=ptype.ExtentMetadata(
             center_dt=datetime.datetime(2014, 10, 12, 0, 56, 6),
             from_dt=datetime.datetime(2014, 10, 12, 0, 55, 54),
             to_dt=datetime.datetime(2014, 10, 12, 0, 56, 18)
         ),
         image=ptype.ImageMetadata(satellite_ref_point_start=ptype.Point(x=101, y=78),
                                   satellite_ref_point_end=ptype.Point(x=101, y=78),
                                   bands={bandname: ptype.BandMetadata(number=bandname,
                                                                       path=Path(input_folder, dataset_folder,
                                                                                 'scene01', bandfile))})
     )
     dataset = ptype.DatasetMetadata(
         id_=_EXPECTED_NBAR.id_
     )
     received = drivers.EODSDriver().fill_metadata(dataset, input_folder.joinpath(dataset_folder))
     self.assert_same(expected, received)
    def to_band(self, dataset, path):
        """
        :type dataset: ptype.DatasetMetadata
        :type path: Path
        :rtype: ptype.BandMetadata

        >>> p = Path('/tmp/something/reflectance_terrain_3.tif')
        >>> NbarDriver('terrain').to_band(None, p).number
        '3'
        >>> NbarDriver('terrain').to_band(None, p).path
        PosixPath('/tmp/something/reflectance_terrain_3.tif')
        >>> p = Path('/tmp/something/LS8_OLITIRS_NBAR_P54_GANBART01-002_112_079_20140126_B4.tif')
        >>> NbarDriver('terrain').to_band(None, p).number
        '4'
        """
        return ptype.BandMetadata(path=path, number=_read_band_number(path))
Esempio n. 6
0
    def test_pqa_to_band(self):
        input_folder = write_files({
            'pqa.tif': '',
            'process.log': '',
            'passinfo': '',
        })

        # Creates a single band.
        self.assertEqual(
            ptype.BandMetadata(path=input_folder.joinpath('pqa.tif'), number='pqa'),
            drivers.PqaDriver().to_band(None, input_folder.joinpath('pqa.tif'))
        )

        # Other files should not be bands.
        self.assertIsNone(drivers.PqaDriver().to_band(None, input_folder.joinpath('process.log')))
        self.assertIsNone(drivers.PqaDriver().to_band(None, input_folder.joinpath('passinfo')))
Esempio n. 7
0
def _read_bands(mtl_, folder_path):
    """

    :type mtl_: dict of (str, obj)
    :type folder_path: pathlib.Path
    >>> import pathlib
    >>> _read_bands({'PRODUCT_METADATA': {
    ...     'file_name_band_9': "LC81010782014285LGN00_B9.TIF"}
    ... }, folder_path=pathlib.Path('product/'))
    {'9': BandMetadata(path=PosixPath('product/LC81010782014285LGN00_B9.TIF'), number='9')}
    """
    bs = _read_mtl_band_filenames(mtl_)

    # TODO: shape, size, md5
    return dict([(number,
                  ptype.BandMetadata(path=folder_path / filename,
                                     number=number))
                 for (number, filename) in bs.items()])
    def to_band(self, dataset, path):
        """
        :type dataset: ptype.DatasetMetadata
        :type final_path: pathlib.Path
        :rtype: ptype.BandMetadata
        """
        if path.suffix.lower() != '.tif':
            return None

        name = path.stem
        # Images end in a band number (eg '_B12.tif'). Extract it.
        position = name.rfind('_')
        if position == -1:
            raise ValueError('Unexpected tif image in eods: %r' % path)
        if re.match(r"[Bb]\d+", name[position + 1:]):
            band_number = name[position + 2:]
        else:
            band_number = name[position + 1:]

        return ptype.BandMetadata(path=path, number=band_number)
Esempio n. 9
0
 def to_band(self, dataset, path):
     numbers = {
         'first': ptype.BandMetadata(path=path, number='1'),
         'second': None
     }
     return numbers.get(path.stem)
Esempio n. 10
0
def _build_ls8_ortho():
    _reset_runtime_id()
    return ptype.DatasetMetadata(
        id_=uuid.UUID('17b92c16-51d3-11e4-909d-005056bb6972'),
        ga_label='LS8_OLITIRS_OTH_P51_GALPGS01-002_101_078_20141012',
        product_type='GAORTHO01',
        creation_dt=dateutil.parser.parse('2014-10-12 05:46:20'),
        size_bytes=2386550 * 1024,
        platform=ptype.PlatformMetadata(code='LANDSAT-8'),
        instrument=ptype.InstrumentMetadata(name='OLI_TIRS',
                                            type_="Multi-Spectral",
                                            operation_mode='PUSH-BROOM'),
        format_=ptype.FormatMetadata(name='GeoTiff', version=1),
        extent=ptype.ExtentMetadata(
            reference_system='WGS84',
            coord=ptype.CoordPolygon(ul=ptype.Coord(lat=-24.97, lon=133.97969),
                                     ur=ptype.Coord(lat=-24.96826,
                                                    lon=136.24838),
                                     lr=ptype.Coord(lat=-26.96338,
                                                    lon=136.26962),
                                     ll=ptype.Coord(lat=-26.96528,
                                                    lon=133.96233)),
            from_dt=dateutil.parser.parse("2014-10-12T00:55:54"),
            center_dt=dateutil.parser.parse("2014-10-12T00:56:06"),
            to_dt=dateutil.parser.parse("2014-10-12T00:56:18"),
        ),
        grid_spatial=ptype.GridSpatialMetadata(
            dimensions=[
                ptype.DimensionMetadata(name='sample',
                                        resolution=25.0,
                                        size=9161),
                ptype.DimensionMetadata(name='line',
                                        resolution=25.0,
                                        size=9161)
            ],
            projection=ptype.ProjectionMetadata(
                centre_point=ptype.Point(511512.500000, 7127487.500000),
                geo_ref_points=ptype.PointPolygon(
                    ul=ptype.Point(397012.5, 7237987.5),
                    ur=ptype.Point(626012.5, 7237987.5),
                    ll=ptype.Point(397012.5, 7016987.5),
                    lr=ptype.Point(626012.5, 7016987.5)),
                datum='GDA94',
                ellipsoid='GRS80',
                point_in_pixel='UL',
                map_projection='UTM',
                resampling_option='CUBIC_CONVOLUTION',
                zone=-53)),
        browse={
            'medium':
            ptype.BrowseMetadata(path=Path(
                'product/LS8_OLITIRS_OTH_P51_GALPGS01-032_101_078_20141012.jpg'
            ),
                                 file_type='image/jpg',
                                 cell_size=219.75,
                                 red_band=7,
                                 green_band=5,
                                 blue_band=1),
            'full':
            ptype.BrowseMetadata(path=Path(
                'LS8_OLITIRS_OTH_P51_GALPGS01-032_101_078_20141012_FR.jpg'),
                                 file_type='image/jpg',
                                 cell_size=25.0,
                                 red_band=7,
                                 green_band=5,
                                 blue_band=1)
        },
        image=ptype.ImageMetadata(
            satellite_ref_point_start=ptype.Point(101, 78),
            cloud_cover_percentage=0,
            cloud_cover_details=None,
            sun_elevation=58.00268508,
            sun_azimuth=59.41814014,
            ground_control_points_model=420,
            geometric_rmse_model=4.610,
            geometric_rmse_model_x=3.527,
            geometric_rmse_model_y=2.968,

            # TODO: What are these two?
            viewing_incidence_angle_long_track=0,
            viewing_incidence_angle_x_track=0,
            bands={
                'coastal_aerosol':
                ptype.BandMetadata(
                    path=Path('product/LC81010782014285LGN00_B1.TIF'),
                    number=1,
                    type_='reflective',
                    cell_size=25.0,
                ),
                'visible_blue':
                ptype.BandMetadata(
                    path=Path('product/LC81010782014285LGN00_B2.TIF'),
                    number=2,
                    type_='reflective',
                    cell_size=25.0,
                ),
                'visible_green':
                ptype.BandMetadata(
                    path=Path('product/LC81010782014285LGN00_B3.TIF'),
                    number=3,
                    type_='reflective',
                    cell_size=25.0,
                ),
                'visible_red':
                ptype.BandMetadata(
                    path=Path('product/LC81010782014285LGN00_B4.TIF'),
                    number=4,
                    type_='reflective',
                    cell_size=25.0,
                ),
                'near_infrared':
                ptype.BandMetadata(
                    path=Path('product/LC81010782014285LGN00_B5.TIF'),
                    number=5,
                    type_='reflective',
                    cell_size=25.0,
                ),
                'short_wave_infrared1':
                ptype.BandMetadata(
                    path=Path('product/LC81010782014285LGN00_B6.TIF'),
                    number=6,
                    type_='reflective',
                    cell_size=25.0,
                ),
                'short_wave_infrared2':
                ptype.BandMetadata(
                    path=Path('product/LC81010782014285LGN00_B7.TIF'),
                    number=7,
                    type_='reflective',
                    cell_size=25.0,
                ),
                'panchromatic':
                ptype.BandMetadata(
                    path=Path('product/LC81010782014285LGN00_B8.TIF'),
                    number=8,
                    type_='panchromatic',
                    cell_size=12.50,
                    shape=ptype.Point(17761, 18241),
                ),
                'cirrus':
                ptype.BandMetadata(
                    path=Path('product/LC81010782014285LGN00_B9.TIF'),
                    number=9,
                    type_='atmosphere',
                ),
                'thermal_infrared1':
                ptype.BandMetadata(
                    path=Path('product/LC81010782014285LGN00_B10.TIF'),
                    number=10,
                    type_='thermal',
                    cell_size=25.0,
                    shape=ptype.Point(8881, 9121),
                ),
                'thermal_infrared2':
                ptype.BandMetadata(
                    path=Path('product/LC81010782014285LGN00_B11.TIF'),
                    number=11,
                    type_='thermal',
                    cell_size=25.0,
                    shape=ptype.Point(8881, 9121),
                ),
                'quality':
                ptype.BandMetadata(
                    path=Path('product/LC81010782014285LGN00_BQA.TIF'),
                    number='QA',
                    type_='quality',
                )
            }),
        lineage=ptype.LineageMetadata(
            algorithm=ptype.AlgorithmMetadata(
                name='Pinkmatter Landsat Processor',
                version='3.3.3104',
                parameters={
                    'resampling': 'CC',
                    'radiometric_correction': 'CPF',
                    'orientation': 'NUP',
                    'hemisphere': 'S',
                }),
            machine=ptype.MachineMetadata(
                hostname='rhe-jm-prod08.prod.lan',
                type_id='jobmanager',
                uname=
                'Linux rhe-jm-dev08.dev.lan 2.6.32-279.22.1.el6.x86_64 #1 SMP Sun Oct '
                '12 '
                '09:21:40 EST 2014 x86_64 x86_64 x86_64 GNU/Linux'),
            ancillary={
                'cpf':
                ptype.AncillaryMetadata(
                    name='L8CPF20141001_20141231.01',
                    uri=
                    '/eoancillarydata/sensor-specific/LANDSAT8/CalibrationParameterFile'
                    '/L8CPF20141001_20141231.01'),
                'bpf_tirs':
                ptype.AncillaryMetadata(
                    name='LT8BPF20141012002432_20141012020301.01',
                    uri=
                    '/eoancillarydata/sensor-specific/LANDSAT8/BiasParameterFile/2014/10'
                    '/LT8BPF20141012002432_20141012020301.01'),
                'bpf_oli':
                ptype.AncillaryMetadata(
                    name='LO8BPF20141012002825_20141012011100.01',
                    uri=
                    '/eoancillarydata/sensor-specific/LANDSAT8/BiasParameterFile/2014/10'
                    '/LT8BPF20141012002432_20141012020301.01'),
                'rlut':
                ptype.AncillaryMetadata(name='L8RLUT20130211_20431231v09.h5')
            },
            source_datasets={'satellite_telemetry_data': _build_ls8_raw()}))
Esempio n. 11
0
def _build_ls8_nbar():
    _reset_runtime_id()
    nbar = ptype.DatasetMetadata(
        id_=uuid.UUID("249ae098-bd88-11e4-beaa-1040f381a756"),
        size_bytes=622208 * 1024,
        ga_label='LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012',
        product_type='GANBAR01',
        platform=ptype.PlatformMetadata(code='LANDSAT-8'),
        instrument=ptype.InstrumentMetadata(name='OLI_TIRS',
                                            type_="Multi-Spectral",
                                            operation_mode='PUSH-BROOM'),
        # acquisition=ptype.AcquisitionMetadata(),
        format_=ptype.FormatMetadata(name='GeoTiff', version=1),
        extent=ptype.ExtentMetadata(
            reference_system='WGS84',
            coord=ptype.CoordPolygon(ul=ptype.Coord(lat=-24.97, lon=133.97969),
                                     ur=ptype.Coord(lat=-24.96826,
                                                    lon=136.24838),
                                     lr=ptype.Coord(lat=-26.96338,
                                                    lon=136.26962),
                                     ll=ptype.Coord(lat=-26.96528,
                                                    lon=133.96233)),
            from_dt=dateutil.parser.parse("2014-10-12T00:55:54"),
            to_dt=dateutil.parser.parse("2014-10-12T00:56:18"),
        ),
        grid_spatial=ptype.GridSpatialMetadata(
            dimensions=[
                ptype.DimensionMetadata(name='sample',
                                        resolution=25.0,
                                        size=9161),
                ptype.DimensionMetadata(name='line',
                                        resolution=25.0,
                                        size=9161)
            ],
            projection=ptype.ProjectionMetadata(
                centre_point=ptype.Point(511512.500000, 7127487.500000),
                geo_ref_points=ptype.PointPolygon(
                    ul=ptype.Point(397012.5, 7237987.5),
                    ur=ptype.Point(626012.5, 7237987.5),
                    ll=ptype.Point(397012.5, 7016987.5),
                    lr=ptype.Point(626012.5, 7016987.5)),
                datum='GDA94',
                ellipsoid='GRS80',
                point_in_pixel='UL',
                map_projection='UTM',
                resampling_option='CUBIC_CONVOLUTION',
                zone=-53)),
        browse={
            'medium':
            ptype.BrowseMetadata(path=Path(
                'LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012.tif'),
                                 file_type='image/jpg',
                                 cell_size=219.75,
                                 red_band=7,
                                 green_band=5,
                                 blue_band=2),
            'full':
            ptype.BrowseMetadata(path=Path(
                'LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_FR.tif'),
                                 file_type='image/jpg',
                                 cell_size=25.0,
                                 red_band=7,
                                 green_band=5,
                                 blue_band=2)
        },
        image=ptype.ImageMetadata(
            satellite_ref_point_start=ptype.Point(101, 78),
            cloud_cover_percentage=0.01,
            cloud_cover_details=None,

            # TODO: What are these two?
            viewing_incidence_angle_long_track=0,
            viewing_incidence_angle_x_track=0,
            bands={
                '1':
                ptype.BandMetadata(path=Path(
                    'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B1.tif'
                ), ),
                '2':
                ptype.BandMetadata(path=Path(
                    'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B2.tif'
                ), ),
                '3':
                ptype.BandMetadata(path=Path(
                    'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B3.tif'
                ), ),
                '4':
                ptype.BandMetadata(path=Path(
                    'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B4.tif'
                ), ),
                '5':
                ptype.BandMetadata(path=Path(
                    'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B5.tif'
                ), ),
                '6':
                ptype.BandMetadata(path=Path(
                    'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B6.tif'
                ), ),
                '7':
                ptype.BandMetadata(path=Path(
                    'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B7.tif'
                ), )
            }),
        lineage=ptype.LineageMetadata(
            algorithm=ptype.AlgorithmMetadata(name='GANBAR',
                                              version='3.2.1',
                                              parameters={}),
            machine=ptype.MachineMetadata(),
            source_datasets={'level1': _build_ls8_ortho()},
            ancillary={}))
    return nbar
Esempio n. 12
0
def _build_ls7_wofs():
    return ptype.DatasetMetadata(
        ga_label='LS7_ETM_WATER_140_-027_2013-07-24T00-32-27.952897',
        product_type='GAWATER',
        size_bytes=616 * 1024,
        platform=ptype.PlatformMetadata(code='LS7'),
        instrument=ptype.InstrumentMetadata(name='ETM',
                                            type_='Multi-Spectral'),
        format_=ptype.FormatMetadata('GeoTIFF', version=1),
        extent=ptype.ExtentMetadata(
            reference_system='WGS84',
            coord=ptype.CoordPolygon(ul=ptype.Coord(140.0000000, -26.0000000),
                                     ll=ptype.Coord(140.0000000, -27.0000000),
                                     ur=ptype.Coord(141.0000000, -26.0000000),
                                     lr=ptype.Coord(141.0000000, -27.0000000)),

            # TODO: Should we store the center coordinate?
            from_dt=dateutil.parser.parse('2013-07-24 00:32:27.952897'),
            to_dt=dateutil.parser.parse('2013-07-24 00:33:15.899670')),
        grid_spatial=ptype.GridSpatialMetadata(
            dimensions=[
                ptype.DimensionMetadata(name='x',
                                        resolution=27.1030749476,
                                        size=4000),
                ptype.DimensionMetadata(name='y',
                                        resolution=27.1030749476,
                                        size=4000)
            ],
            # TODO: Should WOfS have tile coordinates here?
            # georectified=ptype.GeoRectifiedSpacialMetadata(
            # geo_ref_points=PointPolygon(
            # ul=ptype.Point(255012.500, 7229987.500),
            # ur=ptype.Point(497012.500, 7229987.500),
            # ll=ptype.Point(255012.500, 7019987.500),
            # lr=ptype.Point(497012.500, 7229987.500)
            # ),
            # checkpoint_availability=0,
            # datum='GDA94',
            #     ellipsoid='GRS80',
            #     point_in_pixel='UL',
            #     projection='UTM',
            #     zone=-54
            # )
        ),
        image=ptype.ImageMetadata(
            satellite_ref_point_start=ptype.Point(98, 78),
            satellite_ref_point_end=ptype.Point(98, 79),
            cloud_cover_percentage=0.76494375,
            cloud_cover_details='122391 count',
            sun_elevation=33.0061002772,
            sun_azimuth=38.2433049177,
            bands={
                'W':
                ptype.BandMetadata(path=Path(
                    'LS7_ETM_WATER_140_-027_2013-07-24T00-32-27.952897.tif'),
                                   # TODO: Nodata value?
                                   )
            }),
        lineage=ptype.LineageMetadata(
            algorithm=ptype.AlgorithmMetadata(name='WOfS',
                                              version='1.3',
                                              parameters={}),
            machine=ptype.MachineMetadata(),
            source_datasets={
                # TODO: LS7 dataset?
            }))