def transform(self, **Xy): """ Parameter --------- Xy: dictionary parameters for fit and transform """ if conf.KW_SPLIT_TRAIN_TEST in Xy: Xy_train, Xy_test = train_test_split(Xy) res = self.estimator.fit(**_sub_dict(Xy_train, self.in_args_fit)) # catch args_transform in ds, transform, store output in a dict Xy_out_tr = _as_dict(self.estimator.transform( **_sub_dict(Xy_train, self.in_args_transform)), keys=self.in_args_transform) Xy_out_te = _as_dict(self.estimator.transform(**_sub_dict(Xy_test, self.in_args_transform)), keys=self.in_args_transform) Xy_out = train_test_merge(Xy_out_tr, Xy_out_te) else: res = self.estimator.fit(**_sub_dict(Xy, self.in_args_fit)) # catch args_transform in ds, transform, store output in a dict Xy_out = _as_dict(self.estimator.transform(**_sub_dict(Xy, self.in_args_transform)), keys=self.in_args_transform) # update ds with transformed values Xy.update(Xy_out) return Xy
def transform(self, **Xy): """ Parameter --------- Xy: dictionary parameters for fit and transform """ if conf.KW_SPLIT_TRAIN_TEST in Xy: Xy_train, Xy_test = train_test_split(Xy) Xy_out = dict() # Train fit res = self.estimator.fit(**_sub_dict(Xy_train, self.in_args_fit)) # Train predict Xy_out_tr = _as_dict(self.estimator.predict(**_sub_dict(Xy_train, self.in_args_predict)), keys=self.out_args_predict) Xy_out_tr = _dict_suffix_keys(Xy_out_tr, suffix=conf.SEP + conf.TRAIN + conf.SEP + conf.PREDICTION) Xy_out.update(Xy_out_tr) # Test predict Xy_out_te = _as_dict(self.estimator.predict(**_sub_dict(Xy_test, self.in_args_predict)), keys=self.out_args_predict) Xy_out_te = _dict_suffix_keys(Xy_out_te, suffix=conf.SEP + conf.TEST + conf.SEP + conf.PREDICTION) Xy_out.update(Xy_out_te) ## True test Xy_test_true = _sub_dict(Xy_test, self.out_args_predict) Xy_out_true = _dict_suffix_keys(Xy_test_true, suffix=conf.SEP + conf.TEST + conf.SEP + conf.TRUE) Xy_out.update(Xy_out_true) else: res = self.estimator.fit(**_sub_dict(Xy, self.in_args_fit)) # catch args_transform in ds, transform, store output in a dict Xy_out = _as_dict(self.estimator.predict(**_sub_dict(Xy, self.in_args_predict)), keys=self.out_args_predict) Xy_out = _dict_suffix_keys(Xy_out, suffix=conf.SEP + conf.PREDICTION) ## True test Xy_true = _sub_dict(Xy, self.out_args_predict) Xy_out_true = _dict_suffix_keys(Xy_true, suffix=conf.SEP + conf.TRUE) Xy_out.update(Xy_out_true) return Xy_out
def _wrapped_node_predict(self, **Xy): Xy_out = _as_dict(self.wrapped_node.predict( **_sub_dict(Xy, self.in_args_predict)), keys=self.out_args_predict) return Xy_out
def _wrapped_node_transform(self, **Xy): Xy_out = _as_dict(self.wrapped_node.transform( **_sub_dict(Xy, self.in_args_transform)), keys=self.in_args_transform) return Xy_out