Esempio n. 1
0
    def __init__(self, wrapped_node, in_args_transform=None):

        if not hasattr(wrapped_node, "transform"):
            raise ValueError("wrapped_node should implement transform")
        super(TransformNode, self).__init__(wrapped_node=wrapped_node)
        self.in_args_transform = \
            _func_get_args_names(self.wrapped_node.transform) \
            if in_args_transform is None else in_args_transform
Esempio n. 2
0
    def __init__(self, wrapped_node, in_args_transform=None):

        if not hasattr(wrapped_node, "transform"):
            raise ValueError("wrapped_node should implement transform")
        super(TransformNode, self).__init__(wrapped_node=wrapped_node)
        self.in_args_transform = \
            _func_get_args_names(self.wrapped_node.transform) \
            if in_args_transform is None else in_args_transform
Esempio n. 3
0
    def __init__(self,
                 wrapped_node,
                 in_args_fit=None,
                 in_args_transform=None,
                 in_args_predict=None,
                 out_args_predict=None):

        is_fit_estimator = False
        if hasattr(wrapped_node, "fit") and hasattr(wrapped_node, "transform"):
            is_fit_estimator = True
        elif hasattr(wrapped_node, "fit") and hasattr(wrapped_node, "predict"):
            is_fit_estimator = True
        if not is_fit_estimator:
            raise ValueError("%s should implement fit and transform or fit "
                             "and predict" % wrapped_node.__class__.__name__)
        super(Estimator, self).__init__(wrapped_node=wrapped_node)
        if in_args_fit:
            self.in_args_fit = in_args_fit
        else:
            self.in_args_fit = _func_get_args_names(self.wrapped_node.fit)
        # Internal Estimator
        if hasattr(wrapped_node, "transform"):
            if in_args_transform:
                self.in_args_transform = in_args_transform
            else:
                self.in_args_transform = \
                    _func_get_args_names(self.wrapped_node.transform)
        # Leaf Estimator
        if hasattr(wrapped_node, "predict"):
            if in_args_predict:
                self.in_args_predict = in_args_predict
            else:
                self.in_args_predict = \
                    _func_get_args_names(self.wrapped_node.predict)
            if out_args_predict is None:
                fit_predict_diff = list(set(self.in_args_fit).difference(
                    self.in_args_predict))
                if len(fit_predict_diff) > 0:
                    self.out_args_predict = fit_predict_diff
                else:
                    self.out_args_predict = self.in_args_predict
            else:
                self.out_args_predict = out_args_predict
Esempio n. 4
0
    def __init__(self,
                 wrapped_node,
                 in_args_fit=None,
                 in_args_transform=None,
                 in_args_predict=None,
                 out_args_predict=None):

        is_fit_estimator = False
        if hasattr(wrapped_node, "fit") and hasattr(wrapped_node, "transform"):
            is_fit_estimator = True
        elif hasattr(wrapped_node, "fit") and hasattr(wrapped_node, "predict"):
            is_fit_estimator = True
        if not is_fit_estimator:
            raise ValueError("%s should implement fit and transform or fit "
                             "and predict" % wrapped_node.__class__.__name__)
        super(Estimator, self).__init__(wrapped_node=wrapped_node)
        if in_args_fit:
            self.in_args_fit = in_args_fit
        else:
            self.in_args_fit = _func_get_args_names(self.wrapped_node.fit)
        # Internal Estimator
        if hasattr(wrapped_node, "transform"):
            if in_args_transform:
                self.in_args_transform = in_args_transform
            else:
                self.in_args_transform = \
                    _func_get_args_names(self.wrapped_node.transform)
        # Leaf Estimator
        if hasattr(wrapped_node, "predict"):
            if in_args_predict:
                self.in_args_predict = in_args_predict
            else:
                self.in_args_predict = \
                    _func_get_args_names(self.wrapped_node.predict)
            if out_args_predict is None:
                fit_predict_diff = list(set(self.in_args_fit).difference(
                    self.in_args_predict))
                if len(fit_predict_diff) > 0:
                    self.out_args_predict = fit_predict_diff
                else:
                    self.out_args_predict = self.in_args_predict
            else:
                self.out_args_predict = out_args_predict
Esempio n. 5
0
    def __init__(self, estimator, in_args_fit=None, in_args_predict=None,
                 out_args_predict=None):
        '''
        Parameters
        ----------
        estimator: any class contains fit and predict functions 
            any class implements fit and predict

        in_args_fit: list of strings
            names of input arguments of the fit method. If missing discover
            discover it automatically.

        in_args_predict: list of strings
            names of input arguments of the predict method. If missing,
            discover it automatically.

        out_args_predict: list of strings
            names of output arguments of the predict method. If missing,
            discover it automatically by self.in_args_fit - in_args_predict.
            If not differences (such with PCA with fit(X) and predict(X))
            use in_args_predict.
        '''
        if not hasattr(estimator, "fit") or not \
            hasattr(estimator, "predict"):
            raise ValueError("estimator should implement fit and predict")
        super(LeafEstimator, self).__init__(estimator=estimator)
        self.in_args_fit = _func_get_args_names(self.estimator.fit) \
            if in_args_fit is None else in_args_fit
        self.in_args_predict = _func_get_args_names(self.estimator.predict) \
            if in_args_predict is None else in_args_predict
        if out_args_predict is None:
            fit_predict_diff = list(set(self.in_args_fit).difference(
                                        self.in_args_predict))
            if len(fit_predict_diff) > 0:
                self.out_args_predict = fit_predict_diff
            else:
                self.out_args_predict = self.in_args_predict
        else:
            self.out_args_predict = out_args_predict
Esempio n. 6
0
    def __init__(self, estimator, in_args_fit=None, in_args_transform=None):
        """
        Parameters
        ----------
        estimator: any class contains fit and transform functions
            any class implements fit and transform

        in_args_fit: list of strings
            names of input arguments of the fit method. If missing discover
            discover it automatically.

        in_args_transform: list of strings
            names of input arguments of the tranform method. If missing,
            discover it automatically.
        """
        if not hasattr(estimator, "fit") or not \
            hasattr(estimator, "transform"):
            raise ValueError("estimator should implement fit and transform")
        super(InternalEstimator, self).__init__(estimator=estimator)
        self.in_args_fit = _func_get_args_names(self.estimator.fit) \
            if in_args_fit is None else in_args_fit
        self.in_args_transform = \
            _func_get_args_names(self.estimator.transform) \
            if in_args_transform is None else in_args_transform