Esempio n. 1
0
def test_check_convergence():
    N = 500
    nu = 0.1
    M_test = 200
    N_test = int(nu * N)

    mu = np.array([0.0, 0.1, 2 * np.pi, 0.1 * np.pi], dtype=np.float32)
    lb_a12 = 0.0
    ub_a12 = 10.0
    lb_a21 = -10.0
    ub_a21 = 0.0
    a11 = Parameter("a11", 1, 0.0)
    a12 = Parameter("a12", 1, lb_a12, ub_a12)
    a21 = Parameter("a21", 1, lb_a21, ub_a21)
    a22 = Parameter("a22", 1, ub=0.0)
    params = [a11, a12, a21, a22]

    M = Model("lds_2D", params)
    M.set_eps(linear2D_freq)
    q_theta, opt_data, epi_path, failed = M.epi(
        mu,
        num_iters=1000,
        K=10,
        N=N,
        stop_early=True,
        save_movie_data=False,
        random_seed=1,
    )
    assert not failed
    assert (opt_data["converged"] == True).sum() > 0

    epi_df = M.get_epi_df()
    epi_df_row = epi_df[epi_df["iteration"] == epi_df["iteration"].max()].iloc[0]
    init = epi_df_row["init"]
    init_params = {"mu": init["mu"], "Sigma": init["Sigma"]}
    nf = M._df_row_to_nf(epi_df_row)
    aug_lag_hps = M._df_row_to_al_hps(epi_df_row)

    best_k, converged, best_H = M.get_convergence_epoch(
        init_params, nf, mu, aug_lag_hps, alpha=0.05, nu=0.1,
    )
    assert converged

    return None
Esempio n. 2
0
def test_epi():
    mu = np.array([0.0, 0.1, 2 * np.pi, 0.1 * np.pi])

    lb_a12 = 0.0
    ub_a12 = 10.0
    lb_a21 = -10.0
    ub_a21 = 0.0
    a11 = Parameter("a11", 1, 0.0)
    a12 = Parameter("a12", 1, lb_a12, ub_a12)
    a21 = Parameter("a21", 1, lb_a21, ub_a21)
    a22 = Parameter("a22", 1, ub=0.0)
    params = [a11, a12, a21, a22]

    M = Model("lds_2D", params)
    M.set_eps(linear2D_freq)
    q_theta, opt_data, epi_path, failed = M.epi(
        mu, num_iters=100, K=1, save_movie_data=True, log_rate=10,
    )
    z = q_theta(50)
    g = q_theta.plot_dist(z)
    M.epi_opt_movie(epi_path)

    params = [a11, a12, a21, a22]
    # should load from prev epi
    M = Model("lds_2D", params)
    M.set_eps(linear2D_freq)
    q_theta, opt_data, epi_path, failed = M.epi(
        mu, num_iters=100, K=1, save_movie_data=True
    )

    print("epi_path", epi_path)

    epi_df = M.get_epi_df()
    epi_df_row = epi_df[epi_df["iteration"] == 100].iloc[0]
    q_theta = M.get_epi_dist(epi_df_row)

    opt_data_filename = os.path.join(epi_path, "opt_data.csv")

    M.set_eps(linear2D_freq)
    q_theta, opt_data, epi_path, failed = M.epi(
        mu, num_iters=100, K=1, save_movie_data=True, log_rate=10,
    )
    opt_data_cols = ["k", "iteration", "H", "cost", "converged"] + [
        "R%d" % i for i in range(1, M.m + 1)
    ]
    for x, y in zip(opt_data.columns, opt_data_cols):
        assert x == y

    assert q_theta is not None

    z = q_theta(1000)
    log_q_z = q_theta.log_prob(z)
    assert np.sum(z[:, 0] < 0.0) == 0
    assert np.sum(z[:, 1] < lb_a12) == 0
    assert np.sum(z[:, 1] > ub_a12) == 0
    assert np.sum(z[:, 2] < lb_a21) == 0
    assert np.sum(z[:, 2] > ub_a21) == 0
    assert np.sum(z[:, 3] > 0.0) == 0
    assert np.sum(1 - np.isfinite(z)) == 0

    # Intentionally swap order in list to insure proper handling.
    params = [a22, a21, a12, a11]
    M = Model("lds", params)
    M.set_eps(linear2D_freq)
    q_theta, opt_data, epi_path, _ = M.epi(
        mu,
        K=2,
        num_iters=100,
        stop_early=True,
        verbose=True,
        save_movie_data=True,
        log_rate=10,
    )
    M.epi_opt_movie(epi_path)

    z = q_theta(1000)
    log_q_z = q_theta.log_prob(z)
    assert np.sum(z[:, 0] < 0.0) == 0
    assert np.sum(z[:, 1] < lb_a12) == 0
    assert np.sum(z[:, 1] > ub_a12) == 0
    assert np.sum(z[:, 2] < lb_a21) == 0
    assert np.sum(z[:, 2] > ub_a21) == 0
    assert np.sum(z[:, 3] > 0.0) == 0
    assert np.sum(1 - np.isfinite(z)) == 0

    print("DOING ABC NOW")
    # Need finite support for ABC
    a11 = Parameter("a11", 1, -10.0, 10.0)
    a12 = Parameter("a12", 1, -10.0, 10.0)
    a21 = Parameter("a21", 1, -10.0, 10.0)
    a22 = Parameter("a22", 1, -10.0, 10.0)
    params = [a11, a12, a21, a22]
    M = Model("lds_2D", params)
    M.set_eps(linear2D_freq)
    init_type = "abc"
    init_params = {"num_keep": 50, "mean": mu[:2], "std": np.sqrt(mu[2:])}

    q_theta, opt_data, epi_path, failed = M.epi(
        mu,
        num_iters=100,
        K=1,
        init_type=init_type,
        init_params=init_params,
        save_movie_data=True,
        log_rate=10,
    )

    params = [a11, a12, a21, a22]
    M = Model("lds2", params)
    M.set_eps(linear2D_freq)
    # This should cause opt to fail with nan since c0=1e20 is too high.
    q_theta, opt_data, epi_path, _ = M.epi(
        mu,
        K=3,
        num_iters=1000,
        c0=1e20,
        stop_early=True,
        verbose=True,
        save_movie_data=False,
        log_rate=10,
    )
    with raises(IOError):
        M.epi_opt_movie(epi_path)

    for x, y in zip(opt_data.columns, opt_data_cols):
        assert x == y

    with raises(ValueError):

        def bad_f(a11, a12, a21, a22):
            return tf.expand_dims(a11 + a12 + a21 + a22, 0)

        M.set_eps(bad_f)

    params = [a11, a12, a21, a22]
    M = Model("lds2", params)
    init_params = {"mu": 2 * np.zeros((4,)), "Sigma": np.eye(4)}
    nf = NormalizingFlow("autoregressive", 4, 1, 2, 10)
    al_hps = AugLagHPs()
    epi_path, exists = M.get_epi_path(init_params, nf, mu, al_hps, eps_name="foo")
    assert not exists
    return None