Esempio n. 1
0
    def __init__(self,
                 R0,
                 recovery_rate,
                 symptomatic_rate,
                 population_size=1.0):

        infection_rate = R0 * recovery_rate

        MatrixEpiModel.__init__(self, list("SEIR"), population_size)

        self.set_quadratic_rates([
            ("S", "I", "S", -infection_rate),
            ("S", "I", "E", +infection_rate),
        ])
        self.add_transition_processes([
            ("E", symptomatic_rate, "I"),
            ("I", recovery_rate, "R"),
        ])
Esempio n. 2
0
    def __init__(self,
                 R0,
                 recovery_rate,
                 quarantine_rate,
                 containment_rate,
                 population_size=1.0):

        infection_rate = R0 * recovery_rate

        MatrixEpiModel.__init__(self, list("SIRXH"), population_size)

        self.set_quadratic_rates([
            ("S", "I", "S", -infection_rate),
            ("S", "I", "I", +infection_rate),
        ])
        self.add_transition_processes([
            ("S", containment_rate, "H"),
            ("I", recovery_rate, "R"),
            ("I", containment_rate + quarantine_rate, "X"),
        ])
Esempio n. 3
0
def mean_field_SIRX_tracing(kw):

    R0 = kw['R0']
    Q0 = kw['Q0']
    waning_quarantine_rate = omega = kw['waning_quarantine_rate']
    recovery_rate = rho = kw['recovery_rate']
    quarantine_rate = kappa = rho * Q0 / (1-Q0)
    infection_rate = eta = R0 * (rho)
    app_participation_ratio = theta = kw['app_participation_ratio']
    k0 = kw['k0']


    model = MatrixEpiModel(list("SIXRQ"))
    model.add_transition_processes([
           ( "Q", waning_quarantine_rate,"S"), 
           ( "I", recovery_rate,"R"),
           ( "I", kappa,"X"),
        ])

    model.add_transmission_processes([
        ( "S", "I", eta, "I", "I"),
        ( "I", "I", theta**2*kappa*k0, "I", "X"),
        ( "S", "I", theta**2*kappa*k0, "I", "Q"),
        ])

    #for C, M in zip(model.compartments, model.quadratic_rates):
    #    print(C, M)

    I0 = kw["I0"]
    model.set_initial_conditions({"S":1-I0,"I":I0})

    t = kw["t"]

    result = model.integrate(t)

    return t, result
Esempio n. 4
0
        MatrixEpiModel.__init__(self, list("SEIR"), population_size)

        self.set_quadratic_rates([
            ("S", "I", "S", -infection_rate),
            ("S", "I", "E", +infection_rate),
        ])
        self.add_transition_processes([
            ("E", symptomatic_rate, "I"),
            ("I", recovery_rate, "R"),
            ("R", waning_immunity_rate, "S"),
        ])


if __name__ == "__main__":  # pragma: no cover
    epi = MatrixEpiModel(list("SEIR"))
    print(epi.compartments)
    print()
    epi.add_transition_processes([
        ("E", 1.0, "I"),
        ("I", 1.0, "R"),
    ])
    print(epi.linear_rates)
    epi.set_quadratic_rates([
        ("S", "I", "S", -1.0),
        ("S", "I", "E", +1.0),
    ])
    print()
    for iM, M in enumerate(epi.quadratic_rates):
        print(epi.get_compartment(iM), M)
Esempio n. 5
0
from epipack import MatrixEpiModel, get_2D_lattice_links
import numpy as np

from time import time

start = time()

N = 1000
links = [(i, i + 1, 1.0) for i in range(N - 1)]

base_compartments = "SIR"

compartments = [(node, C) for node in range(N) for C in "SIR"]
model = MatrixEpiModel(compartments)

infection_rate = 2
recovery_rate = 1
mobility_rate = 0.1

quadratic_processes = []
linear_processes = []

print("defining processes")

for node in range(N):
    quadratic_processes.append(
        ((node, "S"), (node, "I"), infection_rate, (node, "I"), (node, "I")), )

    linear_processes.append(((node, "I"), recovery_rate, (node, "R")))

for u, v, w in links:
from time import time

start = time()

network, config, _ = nw.load('MHRN.json')

# get the network properties
N = len(network['nodes'])
links = [ ( link['source'], link['target'], 1.0 ) for link in network['links'] ]


base_compartments = "SIR"

compartments = [ (node, C) for node in range(N) for C in base_compartments ]
model = MatrixEpiModel(compartments)

infection_rate = 3
recovery_rate = 1
mobility_rate = 0.05

quadratic_processes = []
linear_processes = []

print("defining processes")

for node in range(N):
    quadratic_processes.append(
            (  (node, "S"), (node, "I"), infection_rate, (node, "I"), (node, "I") ),
        )