Esempio n. 1
0
    def test_dict2csv_convert(self):
        (handle, file_name) = tempfile.mkstemp('.csv', 'test_csv_interface_')
        os.close(handle)
        
        attribute_dic = {'LONGITUDE': self.LONGITUDE,
                         'LATITUDE': self.LATITUDE,
                         'WALLS': self.WALLS}
        # This is actually assumed to be a list in the code...
        title_index_dic = {'LONGITUDE': 0,
                           'LATITUDE': 1,
                           'WALLS': 2}
        convert = {'LONGITUDE': float,
                   'LATITUDE': float,
                   'WALLS' :str}
        util.dict2csv(file_name, title_index_dic, attribute_dic)

        attribute_dic_new, title_index_dic_new = \
            csvi.csv2dict(file_name, title_check_list=title_index_dic,
                          convert=convert)
        self.assert_(attribute_dic_new['LONGITUDE'] == self.LONGITUDE)
        self.assert_(attribute_dic_new['LATITUDE'] == self.LATITUDE)
        self.assert_(attribute_dic_new['WALLS'] == self.WALLS)
        self.assert_(attribute_dic_new == attribute_dic)
        self.assert_(title_index_dic_new == title_index_dic_new)
        
        os.remove(file_name)
Esempio n. 2
0
    def test_dict2csv_bad(self):
        (handle, file_name) = tempfile.mkstemp('.csv', 'test_csv_interface_')
        os.close(handle)
        
        attribute_dic = {'LONGITUDE': self.LONGITUDE,
                         'LATITUDE': self.LATITUDE,
                         'WALLS': self.WALLS}
        title_index_dic = {'LONGITUDE': 0,
                           'LATITUDE': 1,
                           'WALLS': 2}
        util.dict2csv(file_name, title_index_dic, attribute_dic)

        try:
            attribute_dic_new, title_index_dic_new = \
                csvi.csv2dict(file_name, title_check_list={'wire': 8})
        except IOError:
            os.remove(file_name)
        else:
            os.remove(file_name)
            self.failUnless(False, "Error not thrown")
Esempio n. 3
0
    def test_dict2csv_bad(self):
        (handle, file_name) = tempfile.mkstemp('.csv', 'test_csv_interface_')
        os.close(handle)

        attribute_dic = {
            'LONGITUDE': self.LONGITUDE,
            'LATITUDE': self.LATITUDE,
            'WALLS': self.WALLS
        }
        title_index_dic = {'LONGITUDE': 0, 'LATITUDE': 1, 'WALLS': 2}
        util.dict2csv(file_name, title_index_dic, attribute_dic)

        try:
            attribute_dic_new, title_index_dic_new = \
                csvi.csv2dict(file_name, title_check_list={'wire': 8})
        except IOError:
            os.remove(file_name)
        else:
            os.remove(file_name)
            self.failUnless(False, "Error not thrown")
def load_site_class2Vs30(file_name):
    """
    Load the data used to convert a site class to a Vs30 value.
    args:
      file_name: The file to be opened, with extension, or
                 a file handle.

    Return:
      class2Vs30_dict: A dic of 'site_class' and 'Vs30' keys.

    Raises:
      IOError if the file is not present or the file does not have
        site_class and Vs30 in the header.
    """
    csv_columns_dict, _ = csv2dict(file_name, ('vs30', 'site_class'),
                                   convert={'vs30': float})

    site_class2Vs30_dict = {}
    for siteclass, Vs30 in map(None, csv_columns_dict['site_class'],
                               csv_columns_dict['vs30']):
        site_class2Vs30_dict[siteclass] = Vs30
    return site_class2Vs30_dict
Esempio n. 5
0
def load_site_class2Vs30(file_name):
    """
    Load the data used to convert a site class to a Vs30 value.
    args:
      file_name: The file to be opened, with extension, or
                 a file handle.

    Return:
      class2Vs30_dict: A dic of 'site_class' and 'Vs30' keys.

    Raises:
      IOError if the file is not present or the file does not have
        site_class and Vs30 in the header.
    """
    csv_columns_dict, _ = csv2dict(file_name, ('vs30', 'site_class'),
                                   convert={'vs30': float})

    site_class2Vs30_dict = {}
    for siteclass, Vs30 in map(None, csv_columns_dict['site_class'],
                               csv_columns_dict['vs30']):
        site_class2Vs30_dict[siteclass] = Vs30
    return site_class2Vs30_dict
Esempio n. 6
0
    def test_dict2csv(self):
        (handle, file_name) = tempfile.mkstemp('.csv', 'test_csv_interface_')
        os.close(handle)
        
        attribute_dic = {'LONGITUDE': self.LONGITUDE,
                         'LATITUDE': self.LATITUDE,
                         'WALLS': self.WALLS}
        title_index_dic = {'LONGITUDE': 0,
                           'LATITUDE': 1,
                           'WALLS': 2}

        util.dict2csv(file_name, title_index_dic, attribute_dic)

        (attribute_dic_new, title_index_dic_new) = \
            csvi.csv2dict(file_name, title_check_list=title_index_dic)
        attribute_dic_new['LONGITUDE'] = \
            [float(x) for x in attribute_dic_new['LONGITUDE']]
        attribute_dic_new['LATITUDE'] = \
            [float(x) for x in attribute_dic_new['LATITUDE']]

        self.assert_(attribute_dic_new == attribute_dic)
        self.assert_(title_index_dic_new == title_index_dic_new)
        
        os.remove(file_name)
Esempio n. 7
0
    def test_dict2csv_convert(self):
        (handle, file_name) = tempfile.mkstemp('.csv', 'test_csv_interface_')
        os.close(handle)

        attribute_dic = {
            'LONGITUDE': self.LONGITUDE,
            'LATITUDE': self.LATITUDE,
            'WALLS': self.WALLS
        }
        # This is actually assumed to be a list in the code...
        title_index_dic = {'LONGITUDE': 0, 'LATITUDE': 1, 'WALLS': 2}
        convert = {'LONGITUDE': float, 'LATITUDE': float, 'WALLS': str}
        util.dict2csv(file_name, title_index_dic, attribute_dic)

        attribute_dic_new, title_index_dic_new = \
            csvi.csv2dict(file_name, title_check_list=title_index_dic,
                          convert=convert)
        self.assert_(attribute_dic_new['LONGITUDE'] == self.LONGITUDE)
        self.assert_(attribute_dic_new['LATITUDE'] == self.LATITUDE)
        self.assert_(attribute_dic_new['WALLS'] == self.WALLS)
        self.assert_(attribute_dic_new == attribute_dic)
        self.assert_(title_index_dic_new == title_index_dic_new)

        os.remove(file_name)
Esempio n. 8
0
    def test_dict2csv(self):
        (handle, file_name) = tempfile.mkstemp('.csv', 'test_csv_interface_')
        os.close(handle)

        attribute_dic = {
            'LONGITUDE': self.LONGITUDE,
            'LATITUDE': self.LATITUDE,
            'WALLS': self.WALLS
        }
        title_index_dic = {'LONGITUDE': 0, 'LATITUDE': 1, 'WALLS': 2}

        util.dict2csv(file_name, title_index_dic, attribute_dic)

        (attribute_dic_new, title_index_dic_new) = \
            csvi.csv2dict(file_name, title_check_list=title_index_dic)
        attribute_dic_new['LONGITUDE'] = \
            [float(x) for x in attribute_dic_new['LONGITUDE']]
        attribute_dic_new['LATITUDE'] = \
            [float(x) for x in attribute_dic_new['LATITUDE']]

        self.assert_(attribute_dic_new == attribute_dic)
        self.assert_(title_index_dic_new == title_index_dic_new)

        os.remove(file_name)
Esempio n. 9
0
def build_replacement_ratios(usage_per_struct, buildings_usage_classification):
    """Return an array of the building components replacement cost ratios.
    shape (# of buildings, 3 (# of components in a structure))

    A structure has 3 components;
      structural
      nonstructural acceleration sensitive
      nonstructural drift sensitive

    The ratio of the replacement cost for each component differs for
    different usage types.

    Also, there are two scales of usage types;
      Functional classification of buildings (FCB)(ABS usage)
      HAZUS usage

    Parameters:
      usage_per_struct: An array, shape (# of buildings) of usage
        values for each structure.
      buildings_usage_classification: The usage scale used.

    Return:
      A dictionary of cost ratios for the strucutures.
      The keys are the structural components;
        'structural', 'nonstructural drift sensitive',
        'nonstructural acceleration sensitive'

    Note: This should only be used once, since it is loading a file.
    """

    usage_column = 'Functional classification of buildings (ABS usage)'
    components = ['structural', 'nonstructural drift sensitive',
                  'nonstructural acceleration sensitive']
    convert = {}

    # extract usage dependent parameters
    if buildings_usage_classification is 'HAZUS':  # HAZUS_USAGE
        file = 'replacement_cost_ratios_wrt_HAZUS_Usage.csv'
    elif buildings_usage_classification is 'FCB':  # FCB_USAGE
        file = 'replacement_cost_ratios_wrt_FCB_Usage.csv'
        convert[usage_column] = int
    else:
        msg = ('b_usage_type_flat = ' + str(buildings_usage_classification)
               + ' not "FCB" or "HAZUS"')
        raise ValueError(msg)

    for comp in components:
        convert[comp] = float

    root_dir = determine_eqrm_path()
    data_dir = join(root_dir, 'resources', 'data')
    (att_dic, _) = csv2dict(join(data_dir, file), convert=convert)

    # This way does not have an assert
    # Build a dict with
    # key (usage, component), value = cost ratio
#     cost_ratios = {}
#     for comp in components:
#         tmp = {}
#         for i,usage in enumerate(att_dic[usage_column]):
#             tmp[usage] = att_dic[comp][i]
#         cost_ratios[comp] = tmp

#     replacement_cost_ratios = {}
#     for comp in components:
#         this_cost_ratios = cost_ratios[comp]
#         tmp = [this_cost_ratios[usage] for usage in usage_per_struct]
#         replacement_cost_ratios[comp] = array(tmp)

    cost_ratios = {}
    for (i, usage) in enumerate(att_dic[usage_column]):
        cost_ratios[usage] = [att_dic[components[0]][i],
                              att_dic[components[1]][i],
                              att_dic[components[2]][i]]

    rcp_array = asarray([cost_ratios[usage] for usage in usage_per_struct])
    assert allclose(sum(rcp_array), rcp_array.shape[0], 0.0000001)

    replacement_cost_ratios = {}
    for (i, comp) in enumerate(components):
        replacement_cost_ratios[comp] = rcp_array[:, i]

    return replacement_cost_ratios
Esempio n. 10
0
def build_replacement_ratios(usage_per_struct, buildings_usage_classification):
    """Return an array of the building components replacement cost ratios.
    shape (# of buildings, 3 (# of components in a structure))

    A structure has 3 components;
      structural
      nonstructural acceleration sensitive
      nonstructural drift sensitive

    The ratio of the replacement cost for each component differs for
    different usage types.

    Also, there are two scales of usage types;
      Functional classification of buildings (FCB)(ABS usage)
      HAZUS usage

    Parameters:
      usage_per_struct: An array, shape (# of buildings) of usage
        values for each structure.
      buildings_usage_classification: The usage scale used.

    Return:
      A dictionary of cost ratios for the strucutures.
      The keys are the structural components;
        'structural', 'nonstructural drift sensitive',
        'nonstructural acceleration sensitive'

    Note: This should only be used once, since it is loading a file.
    """

    usage_column = 'Functional classification of buildings (ABS usage)'
    components = [
        'structural', 'nonstructural drift sensitive',
        'nonstructural acceleration sensitive'
    ]
    convert = {}

    # extract usage dependent parameters
    if buildings_usage_classification is 'HAZUS':  # HAZUS_USAGE
        file = 'replacement_cost_ratios_wrt_HAZUS_Usage.csv'
    elif buildings_usage_classification is 'FCB':  # FCB_USAGE
        file = 'replacement_cost_ratios_wrt_FCB_Usage.csv'
        convert[usage_column] = int
    else:
        msg = ('b_usage_type_flat = ' + str(buildings_usage_classification) +
               ' not "FCB" or "HAZUS"')
        raise ValueError(msg)

    for comp in components:
        convert[comp] = float

    root_dir = determine_eqrm_path()
    data_dir = join(root_dir, 'resources', 'data')
    (att_dic, _) = csv2dict(join(data_dir, file), convert=convert)

    # This way does not have an assert
    # Build a dict with
    # key (usage, component), value = cost ratio
    #     cost_ratios = {}
    #     for comp in components:
    #         tmp = {}
    #         for i,usage in enumerate(att_dic[usage_column]):
    #             tmp[usage] = att_dic[comp][i]
    #         cost_ratios[comp] = tmp

    #     replacement_cost_ratios = {}
    #     for comp in components:
    #         this_cost_ratios = cost_ratios[comp]
    #         tmp = [this_cost_ratios[usage] for usage in usage_per_struct]
    #         replacement_cost_ratios[comp] = array(tmp)

    cost_ratios = {}
    for (i, usage) in enumerate(att_dic[usage_column]):
        cost_ratios[usage] = [
            att_dic[components[0]][i], att_dic[components[1]][i],
            att_dic[components[2]][i]
        ]

    rcp_array = asarray([cost_ratios[usage] for usage in usage_per_struct])
    assert allclose(sum(rcp_array), rcp_array.shape[0], 0.0000001)

    replacement_cost_ratios = {}
    for (i, comp) in enumerate(components):
        replacement_cost_ratios[comp] = rcp_array[:, i]

    return replacement_cost_ratios