def plot_data_and_errors(): inputs = [.30, .40, .50, .60, .70] predictions = list(map(lambda angle: 40*angle,inputs)) predictions_trace = trace_values(inputs, predictions, 'lines', name = 'predictions') errors = [-4, -9, -11] error_traces = error_line_traces(observed_shot_angles, observed_distances, errors) return py.plot([data_trace, predictions_trace] + error_traces)
def updated_model_with_errors(parameter): layout = { 'yaxis': { 'range': [0, 450], 'title': 'sales' }, 'xaxis': { 'title': 'ad spend' } } inputs = list(range(1500, 4500, 250)) predictions = list( map(lambda ad_spend: parameter * ad_spend, observed_ad_spends)) data_trace = trace_values([2000, 3500, 4000], [260, 445, 490], name='actual sales') predictions_trace = trace_values(observed_ad_spends, predictions, 'lines', name='predictions') y_values_y_hats = list(zip(observed_sales, predictions)) errors = list(map(lambda pair: pair[0] - pair[1], y_values_y_hats)) error_traces = error_line_traces(observed_ad_spends, observed_sales, errors) return plot([data_trace, predictions_trace] + error_traces)
def plot_data_and_errors(): inputs = list(range(1500, 4500, 250)) predictions = list(map(lambda input: .15*input,inputs)) predictions_trace = trace_values(inputs, predictions, 'lines', name = 'predictions') errors = [-40, -80, -110] ad_spends = [2000, 3500, 4000] sales = [260, 445, 490] error_traces = error_line_traces(ad_spends, sales, errors) return plot([data_trace, predictions_trace] + error_traces)
def updated_model_with_errors(parameter): layout = {'yaxis': {'range': [0, 18], 'title': 'shot distance'}, 'xaxis': {'title': 'shot angle'}} predictions = list(map(lambda angle: parameter*angle, observed_shot_angles)) actual_trace = trace_values(observed_shot_angles, observed_distances, name = 'actual shots') predictions_trace = trace_values(observed_shot_angles, predictions, 'lines', name = 'predictions') y_values_y_hats = list(zip(observed_distances, predictions)) errors = list(map(lambda pair: pair[0] - pair[1], y_values_y_hats)) error_traces = error_line_traces(observed_shot_angles, observed_distances, errors) return py.plot([actual_trace, predictions_trace] + error_traces)