Esempio n. 1
0
def get_question_sets(context_skeleton,
                      qformat,
                      fit_contexts=False,
                      contexts_to_fit=None,
                      HHEd_fix=False):
    #Should be unnecessary due to argparse, but just to be sure.
    if qformat not in ["Nitech_NN", "HMM", "CSTR_NN"]:
        raise SiReError(
            "Invalid question format ({0})! Must be either HMM, Nitech_NN or CSTR_NN!"
            .format(qformat))
    c = context_skeleton
    c_utt = copy.deepcopy(context_skeleton)
    questions = []
    if fit_contexts == True:
        #First we obtain a dict containing a list of all used values for each context feature.
        for context in contexts_to_fit:
            for key in context.added_contexts:
                c.add_multiple(key, context.added_contexts[key])
                #Check if this should be in the GV context set
                if getattr(c, key) and "utt" in getattr(c, key):
                    c_utt.add_multiple(key, context.added_contexts[key])
        #Then we create questions based on these
        qs = make_questions(c, qformat, False, HHEd_fix)
        q_utt = make_questions(c_utt, qformat, False, HHEd_fix, True)
        return (qs, q_utt)
    else:
        raise SiReError(
            "Not Implemented yet! (Not fitting contexts for question set.)")
Esempio n. 2
0
def reduce_word_tuples(words, score_file, reduction_level):
    #Our initial assumption is nothing needs reduction
    w_l = [[word, False] for word in words]
    #If we don't reduce we just return all unreduced
    if reduction_level == 1.0:
        return w_l
    #If the reduction_level is not between 0 and 1 we fail
    elif reduction_level > 1.0 or reduction_level < 0.0:
        raise SiReError(
            "Reduction level must be between 1.0 and 0.0 but was {0}".format(
                reduction_level))
    #As words may appear more than once we make a dict indexed on word pos.
    scores = {}
    for i, x in enumerate(open(score_file, "r").readlines()):
        scores[i] = x.strip().split()

    if len(scores) != len(words):
        raise SiReError(
            "I seem to have a mismatching set of words ({0}) and LM scores ({1}) for {2}"
            .format(len(words), len(scores), score_file))

    #The number of words to reduce
    n_to_reduce = int(round(len(words) * (1 - reduction_level), 0))

    #A list of dict entry tuples ordered by score in descending order
    ranked = sorted(scores.items(), key=lambda (k, v): v[1])

    #Now mark the appropriate ones to be reduced
    for i in range(n_to_reduce):
        w_l[ranked[i][0]][1] = True

    return w_l
Esempio n. 3
0
def to_relational(pos, mpos, fw, accept_xx=False):
    if accept_xx:
        if pos == "xx" or mpos == "xx":
            return 0.0
    if pos > mpos:
        raise SiReError(
            "Position ({0}) is above max position ({1}). Should not happen!".
            format(pos, mpos))
    #To avoid dividing with 0
    if mpos == 0:
        #This is technically correct but we could consider using 0.01
        return 1.0
    if fw == True:
        p = 1 - round(float(pos) / float(mpos), 2)
        #0.0 is reserved for pause segments
        if p == 0.0:
            p = 0.01
        return p
    elif fw == False:
        p = round(float(pos) / float(mpos), 2)
        #0.0 is reserved for pause segments
        if p == 0.0:
            p = 0.01
        return p
    else:
        raise SiReError("FW/BW unspecified! Please use bool!")
Esempio n. 4
0
def check_value(context_skeleton, variable_name, value):
    #Is the value of the correct type?
    attr = getattr(context_skeleton, variable_name)
    if attr == None:
        if variable_name in ["start", "end"]:
            try:
                int(value)
                return True
            except (ValueError, TypeError):
                pass
    elif "float" in attr:
        try:
            float(value)
            return True
        except ValueError:
            if "xx" in attr and value == "xx":
                return True
    elif attr == "bool":
        if isinstance(value, str):
            return True
    elif "int" in attr:
        try:
            int(value)
            return True
        except ValueError:
            if "xx" in attr and value == "xx":
                return True
    else:
        raise SiReError("Unknown attribute type ({0})!".format(attr))
    raise SiReError(
        "Value ({0}) is not valid for variable type ({1}) variable ({2}) in \n {3}"
        .format(value, attr, variable_name, context_skeleton))
Esempio n. 5
0
def load_stanford_pcfg_parse(utt, parse, comma_is_pause=False):
    if utt.words == None:
        raise SiReError(
            "No words in utterance! Please load an mlf or txt file first!")
    tree = parsetrees.stanfordPcfgTree()
    tree.make_tree(parse)
    if comma_is_pause == True:
        leafs = tree.get_leafs(include_punct=[","])
    else:
        leafs = tree.get_leafs()
    num_w = utt.num_words_no_pau(comma_is_pause)
    if len(leafs) != num_w:
        #First we try to see if this is due to differences in how words are
        #dealt with in parsing and annotation.
        #Prime example is using 's in e.g. there's for transcription instead of there is.
        #Parsing splits there's into two whereas in e.g. combilex there's is one word.
        #If this is the case we split the WORD into two with the 's being a single phoneme
        #single syllable word. In other cases the contraction straddles two words and
        #we add a "phony" word which affects contexts but adds no phonemes.
        utterance_utils.try_split_words(utt)
        #Update num_w
        num_w = utt.num_words_no_pau(comma_is_pause)
        if len(leafs) != num_w:
            for w in utt.words:
                print w.id
            raise SiReError(
                "Number of leaves ({0}) not equal to number of words ({1})! In utt ({2})!"
                .format(len(leafs), num_w, utt.id))
    #Match each word with parse
    words = utt.get_words_no_pau(comma_is_pause)
    for i, word in enumerate(words):
        l = leafs[i].label.split("-")
        word.id = l[1]
        word.pos = l[0]
        #There should always be a parent
        word.parent_phrase = leafs[i].parent
        #But there might not be more than one
        if word.parent_phrase.parent != None:
            word.grandparent_phrase = word.parent_phrase.parent
        else:
            word.grandparent_phrase = parsetrees.get_fake_stanford_pcfg_parse()
        #And certainly we might be done here
        if word.grandparent_phrase.parent in [
                None, "xx"
        ] or word.grandparent_phrase.parent.label == "xx":
            word.greatgrandparent_phrase = parsetrees.get_fake_stanford_pcfg_parse(
            )
        else:
            word.greatgrandparent_phrase = word.grandparent_phrase.parent

    #Now add fake parse for sil, pau and #
    for word in utt.words:
        if word.id in utt.phoneme_features.get_sil_phonemes():
            word.parent_phrase = parsetrees.get_fake_stanford_pcfg_parse()
            word.grandparent_phrase = parsetrees.get_fake_stanford_pcfg_parse()
            word.greatgrandparent_phrase = parsetrees.get_fake_stanford_pcfg_parse(
            )
            word.pos = "sil"
Esempio n. 6
0
 def add(self, v_name, value):
   if hasattr(self, v_name):
     if context_utils.check_value(self, v_name, value):
       if v_name not in self.added_contexts:
         self.added_contexts[v_name] = value
       else:
         raise SiReError("Tried to add a context ({0} - new value: {1}) which already has a value ({2}).".format(v_name, value, self.added_contexts[v_name]))
   else:
     raise SiReError("Tried to add context ({0}) which does not exist in skeleton! ".format(v_name))
Esempio n. 7
0
def merge_hvite_state_with_sp_align_mlf(state_labs, phone_labs):
    """
  Create a state-alignment based mlf for use in e.g. Neural Network systems that rely on HMM state-alignments.
  Input:
    state_mlf - MLF from an HVite alignment output at the state-level not containing short pause (SP) and syllable stress/boundary markers.
    phone_mlf - MLF suitable as input for a HVite alignment at the phoneme level containing short pause (SP) and syllable stress/boundary markers. This is equivalent to the sp.mlf produced by make_lattices_and_mlfs.py.
  Output:
    merged_mlf - MLF in HVite state-level alignment format as if SP and syllable stress/boundary information had initially existed (given 0 duration).
  """
    if len(state_labs) != len(phone_labs):
        raise SiReError(
            "Number of state align labs ({0}) not equal to the number of phone align labs ({1})!"
            .format(len(state_labs), len(phone_labs)))

    #Sort them by name
    state_labs = sorted(state_labs, key=lambda name: name[0])
    phone_labs = sorted(phone_labs, key=lambda name: name[0])

    #Prep out list
    merged = []

    for i, s_lab in enumerate(state_labs):
        p_lab = phone_labs[i]
        #Check we have the correct labels to merge
        if s_lab[0] != p_lab[0]:
            raise SiReError(
                "The labels are not from the same files! State lab = {0}, context lab = {1}"
                .format(s_lab[0], p_lab[0]))
        #Do the merging
        s_lab.pop(0)
        s_lab_count = 0
        c_merge = [p_lab.pop(0)]
        for line in p_lab:
            c_p = []
            s_phone = s_lab[s_lab_count][0][-1]
            if line[-1] != s_phone:
                if line[-1] in ["#1", ".", "#2", "sp"]:
                    c_p.append(
                        ["0", "0", "s2", "FAKE", line[-1], "FAKE", line[-1]])
                    c_p.append(["0", "0", "s3"])
                    c_p.append(["0", "0", "s4"])
                    c_p.append(["0", "0", "s5"])
                    c_p.append(["0", "0", "s6"])
                    c_merge.append(c_p)
                else:
                    print s_phone
                    print line[-1]
                    raise SiReError(
                        "Mismatch in phone content! Please check MLFs for lab {0}!"
                        .format(c_merge[0]))
            else:
                c_merge.append(s_lab[s_lab_count])
                s_lab_count += 1
        merged.append(c_merge)
    return merged
Esempio n. 8
0
def parse_mlf(mlf, intype):
    if intype in ["align_mlf", "state_align_mlf"]:
        ext = ".rec"
    elif intype == "hts_mlf":
        ext = ".lab"
    else:
        raise SiReError(
            "Don't know what to do with mlf of type - {0}".format(intype))
    #Remove mlf header
    mlf.pop(0)
    labs = []
    tmp = []
    end = len(mlf) - 1
    for i, l in enumerate(mlf):
        l = l.split()
        if ext in l[0]:
            if tmp == []:
                tmp.append(l[0].split("*/")[1].split(".")[0])
            else:
                if tmp[-1] == ["."]:
                    tmp.pop(-1)
                labs.append(tmp)
                tmp = []
                tmp.append(l[0].split("*/")[1].split(".")[0])
        elif i == end:
            labs.append(tmp)
        else:
            tmp.append(l)
    # Collapse states
    if intype == "state_align_mlf":
        new_labs = []
        for lab in labs:
            n_lab = []
            tmp = []
            for i, line in enumerate(lab):
                #print line
                if i == 0:
                    n_lab.append(line)
                elif line[2] == "s2":
                    tmp.append(line)
                elif line[2] == "s6":
                    #Append the state info
                    tmp.append(line)
                    if len(tmp) != 5:
                        raise SiReError(
                            "Not enough states in phone! 5 expected but I got {0}! Please check format.\n{1}"
                            .format(len(tmp), tmp))
                    n_lab.append(tmp)
                    tmp = []
                else:
                    tmp.append(line)
            new_labs.append(n_lab)
        labs = new_labs
    return labs
Esempio n. 9
0
def make_words(utt):
    words = []
    word = {"id": "", "syllables": []}
    for i, s in enumerate(utt):
        #The check for len phonemes is necessary as the syll id is composed
        #of phoneme ids and all of "s", "i", "l" and "p" are valid ids.
        #Thus a syllable of the phonemes "s" and "p" has the id "sp".
        if s["id"] in ["sil", "sp"] and len(s["phonemes"]) == 1:
            if word["syllables"] != []:
                word["start"] = word["syllables"][0]["start"]
                word["end"] = word["syllables"][-1]["end"]
                words.append(word)
            #If the silence is of any length it should be kept.
            if s["end"] - s["start"] > 0:
                words.append({
                    "id": s["id"],
                    "syllables": [s],
                    "start": s["start"],
                    "end": s["end"]
                })
            elif i == 0 or i == len(utt) + 1:
                #Something is likely fishy
                raise SiReError(
                    "Boundary silence not of any length in word ({0})!".format(
                        word))
            word = {"id": "", "syllables": []}
        else:
            word["syllables"].append(s)
            word["id"] += s["id"]
    return words
Esempio n. 10
0
def open_labdir_line_by_line(path, dur_lab=False):
    l = os.listdir(path)
    labs = []
    if dur_lab == False:
        for i, lab in enumerate(l):
            if ".lab" in lab:
                tmp = [lab.split(".")[0]]
                tmp += [
                    x.split()
                    for x in open(os.path.join(path, lab), "r").readlines()
                ]
                labs.append(tmp)
    elif dur_lab == True:
        for i, lab in enumerate(l):
            if ".dur" in lab:
                c_pos = 0
                tmp = [lab.split(".")[0]]
                for x in open(os.path.join(path, lab), "r").readlines():
                    if ".state[" not in x:
                        x = x.split()
                        frames = int(x[-3].split("=")[1])
                        tmp += [[
                            str(c_pos * 50000),
                            str((c_pos + frames) * 50000), x[0]
                        ]]
                        c_pos += frames
                labs.append(tmp)
    else:
        raise SiReError("dur_lab must be boolean!")
    return labs
Esempio n. 11
0
def load_stanford_dependency_parse(utt, parse):
    if utt.words == None:
        raise SiReError(
            "No words in utterance! Please load an mlf or txt file first!")
    tree = parsetrees.stanfordDependencyTree()
    tree.make_tree(parse)
    #As each word is at a node not at a leaf we get the nodes.
    nodes = tree.get_nodes(utt_sorted=True)
    if len(nodes) != utt.num_words_no_pau():
        #First we try to see if this is due to differences in how words are
        #dealt with in parsing and annotation.
        #Prime example is using 's in e.g. there's for transcription instead of there is.
        #Parsing splits there's into two whereas in e.g. combilex there's is one word.
        #If this is the case we split the WORD into two with the 's being a single phoneme
        #single syllable word. In other cases the contraction straddles two words and
        #we add a "phony" word which affects contexts but adds no phonemes.
        utterance_utils.try_split_words(utt)
        if len(nodes) != utt.num_words_no_pau():
            for node in nodes:
                print node.label
            raise SiReError(
                "Number of nodes ({0}) not equal to number of words ({1})! In utt ({2})!"
                .format(len(nodes), utt.num_words_no_pau(), utt.id))
    #Match each word with parse
    for i, word in enumerate(utt.get_words_no_pau()):
        #As we may have split words the parse contains the id
        word.id = nodes[i].label
        #But as we may have punctuation the word itself contains the utt_pos
        nodes[i].utt_pos = word.pos_in_utt()
        #There should always be itself
        word.parent_dependency = nodes[i]
        #And there should always be a parent
        word.grandparent_dependency = word.parent_dependency.parent
        #But there might not be more than one
        if word.grandparent_dependency.parent != None:
            word.greatgrandparent_dependency = word.grandparent_dependency.parent
        else:
            word.greatgrandparent_dependency = parsetrees.stanfordDependencyTree(
            )

    #Now add empty parse for sil, pau and #
    for word in utt.words:
        if word.id in utt.phoneme_features.get_sil_phonemes() + [","]:
            word.parent_dependency = parsetrees.stanfordDependencyTree()
            word.grandparent_dependency = parsetrees.stanfordDependencyTree()
            word.greatgrandparent_dependency = parsetrees.stanfordDependencyTree(
            )
Esempio n. 12
0
 def is_phoneme(self, phoneme, fail=False):
     if phoneme in self.phonemes:
         return True
     else:
         if fail:
             raise SiReError(
                 "Phoneme ({0}) not a valid phoneme!".format(phoneme))
         return False
Esempio n. 13
0
 def add_multiple(self, v_name, value):
   if hasattr(self, v_name):
     if context_utils.check_value(self, v_name, value):
       if v_name not in self.added_contexts:
         self.added_contexts[v_name] = [value]
       else:
         self.added_contexts[v_name] += [value]
   else:
     raise SiReError("Tried to add context ({0}) which does not exist in skeleton! ".format(v_name))
Esempio n. 14
0
def merge_hvite_state_align_and_full_context_lab(state_align_labs,
                                                 full_context_labs):
    """
  Create a state-alignment based full-context label for use in e.g. Neural Network systems that rely on HMM state-alignments.
  Input:
    state_align_labs - Labels from an HVite alignment output at the state-level.
    full_context_labs - Labels from any full-context method on the phoneme level (any SiRe output contexts or standard HTS full-context labels)
  """
    if len(state_align_labs) != len(full_context_labs):
        raise SiReError(
            "Number of align labs ({0}) not equal to the number of full context labs ({1})!"
            .format(len(state_align_labs), len(full_context_labs)))

    #Prep out list
    merged = []

    #Sort them by name
    state_align_labs = sorted(state_align_labs, key=lambda name: name[0])
    full_context_labs = sorted(full_context_labs, key=lambda name: name[0])
    for i, lab in enumerate(state_align_labs):
        f_lab = full_context_labs[i]
        #Check we have the correct labels to merge
        if f_lab[0] != lab[0]:
            raise SiReError(
                "The labels are not from the same files! State lab = {0}, context lab = {1}"
                .format(lab[0], f_lab[0]))
        #Do the merging
        f_lab.pop(0)
        p = -1
        f_line = None
        c_merge = [lab.pop(0)]
        for l in lab:
            if len(l) == 7:
                p += 1
                f_line = f_lab[p][-1]
                c_merge.append(
                    [l[0], l[1], f_line + "[" + l[2][-1] + "]", f_line])
            elif len(l) == 4:
                c_merge.append([l[0], l[1], f_line + "[" + l[2][-1] + "]"])
            else:
                raise SiReError("Error in align lab line: {0}".format(l))
        merged.append(c_merge)
    return merged
Esempio n. 15
0
def strfloatify(fl):
    #Just to make sure we deal with a int
    if type(fl) is not int:
        raise SiReError("Cannot strintify type {0}! Must be int!".format(
            type(fl)))
    #First do the division
    fl = float(fl) / 100
    #Round
    fl = round(fl, 2)
    #Return the float string
    return str(fl)
Esempio n. 16
0
def strintify(fl):
    #Just to make sure we deal with a float
    if type(fl) is not float:
        raise SiReError("Cannot strintify type {0}! Must be float!".format(
            type(fl)))
    #First remove any leftovers and make sure we don't just floor
    fl = round(fl, 2)
    #Do the multiplication. We round due to issues with float arithmetic.
    fl = round(fl * 100, 0)
    #Return the int string
    return str(int(fl))
Esempio n. 17
0
def make_hmm_relational_qs(values, key, qtype):
    questions = []
    #Add xx question if appropriate else ignore
    if "xx" in values:
        if "xx" in qtype:
            questions.append("QS \"" + key + "-xx\" {*|" + key + ":xx|*}")
        else:
            raise SiReError(
                "xx in values but not in qtype {0} for key {1} - why?".format(
                    qtype, key))
        values.remove("xx")
    for i, val in enumerate(values):
        if "float" in qtype:
            val = strintify(float(val))
        questions.append("QS \"" + key + "-" + str(val) + "\" {*|" + key +
                         ":" + str(val) + "|*}")
        #If val is more than one we make a less than question
        #If we count 0 then we start at 0
        if "0" in qtype:
            start = 0
        else:
            start = 1
        if int(val) > start:
            #Prep the less than string
            s = "QS \"" + key + "<=" + str(val) + "\" {"
            #Make the less than string
            #Get tens and remainder
            tens = int(val) / 10
            remainder = int(val) % 10
            if tens > 0:
                #Make singles
                for n in range(start, 10):
                    s += "*|" + key + ":" + str(n) + "|*,"
                #Make tens
                for n in range(1, tens):
                    s += "*|" + key + ":" + str(n) + "?|*,"
                for n in range(remainder + 1):
                    if n != remainder:
                        s += "*|" + key + ":" + str(tens) + str(n) + "|*,"
                    else:
                        s += "*|" + key + ":" + str(tens) + str(n) + "|*}"
                        questions.append(s)
            else:
                #Just make singles
                for n in range(start, int(val) + 1):
                    s += "*|" + key + ":" + str(n) + "|*"
                    if n != int(val):
                        s += ","
                    else:
                        s += "}"
                        questions.append(s)
    return questions
Esempio n. 18
0
def remake_stops(lab):
    remove = []
    for i, l in enumerate(lab):
        if "_cl" in l[-1]:
            if lab[i + 1][-1] + "_cl" != l[-1]:
                raise SiReError(
                    "Closure not preceding release! In {0}".format(lab))
            else:
                lab[i + 1][0] = l[0]
                remove.append(l)
    for r in remove:
        lab.remove(r)
    return lab
Esempio n. 19
0
 def get_entries(self, word, punct_as_sil=None):
   try:
     return self.raw_dictionary_entries[word]
   except KeyError:
     #If this has underscores we try to pronounce each letter individually.
     if "_" in word:
       #The total phoneme string
       w_phon = ""
       for w in word.split("_"):
         #Get the entry
         ent = self.get_single_entry(w)
         #Get the phoneme string with syllable stress
         ent = self.get_entry_phonemes(ent, True)
         w_phon += " "+ent
       print "Warning! \"{0}\" looks like it should be pronounced {1} and is a proper noun. I'm doing that. Is it right?".format(word, w_phon)
       return [self.make_entry("nnp", w_phon.strip(), reduced=False)]
     elif punct_as_sil and word in punct_as_sil[0]:
       if punct_as_sil[1] in self.phoneme_feats.get_sil_phonemes():
         return [self.make_entry(punct_as_sil[1], punct_as_sil[1]+" 0")]
       else:
         raise SiReError("Cannot add punctuation {0} as silence as sil phoneme specified ({1}) is not valid! Must be in {3}.".format(word, punct_as_sil[1], phoneme_feats.get_sil_phonemes()))
     else:
       raise SiReError("Could not find \"{0}\" in dictionary! Please add it manually.".format(word))
Esempio n. 20
0
def get_sire_general_pos(word):
    if word.pos in [
            "cd", "dt", "ex", "fw", "ls", "md", "pos", "rp", "uh", "sym", "sil"
    ]:
        return word.pos
    elif word.id in [
            "is", "am", "are", "was", "were", "has", "have", "had", "be"
    ]:  #This is derived from the festival aux set which else would be verb here.
        return "aux"
    elif word.id in [
            "her", "his", "their", "its", "our", "their", "its", "mine"
    ]:  #This is derived from the festival pps set which else would be noun here.
        return "pps"
    elif word.pos in ["cc", "in", "to"]:
        return "conj"
    elif word.pos in ["jj", "jjr", "jjs"]:
        return "adj"
    elif word.pos in ["nn", "nns", "nnp", "nnps", "prp", "prp$"]:
        return "noun"
    elif word.pos == "pdt":
        return "dt"
    elif word.pos in ["rb", "rbr", "rbs"]:
        return "adv"
    elif word.pos in ["vb", "vbd", "vbg", "vbn", "vbp", "vbz"]:
        return "verb"
    elif word.pos in ["wdt", "wp", "wp$", "wrb"]:
        return "wh"
    elif word.pos in [".", ",", ":", ";", "\"", "'", "(", "?", ")", "!"]:
        return "punc"
    else:
        if word.pos == "content":
            raise SiReError(
                "To do the SiRe pos tag generalisation you must not be doing simple_festival_pos_predict but use a proper tagger!"
            )
        else:
            raise SiReError("Cannot categorise pos tag ({0})!".format(
                word.pos))
Esempio n. 21
0
 def get_parent_general_relation(self):
   pr = self.parent_relation
   if pr in ["auxpass", "cop"]: #aux
     return "aux"
   elif pr in ["agent", "root", "dep", "aux", "arg", "obj", "subj", "cc", "conj", "expl", "mod", "parataxis", "punct", "ref", "sdep", "goeswith", "xsubj", "discourse"]: #nonreduced - discourse is not in manual hierarcy but should nto be reduced
     return pr
   elif pr in ["acomp", "ccomp", "xcomp", "pcomp"]: #The stanford manuals hierarchy has forgotten pcomp but this should be the cat
     return "comp"
   elif pr in ["dobj", "iobj", "pobj"]:
     return "obj"
   elif pr in ["nsubj", "nsubjpass", "csubj", "csubjpass"]:
     return "subj"
   elif pr in ["amod", "appos", "advcl", "det", "predet", "preconj", "vmod", "mwe", "mark", "advmod", "neg", "rcmod", "quantmod", "nn", "npadvmod", "tmod", "num", "number", "prep", "poss", "possessive", "prt"]:
     return "mod"
   else:
     raise SiReError("Undefined parent_relation ({0}) for simplification! Are you using the stanford parser?".format(pr))
Esempio n. 22
0
def get_text_utts(indir, compilexpath):
    txt = load_txt_dir(indir)

    dct = dictionary.Dictionary(compilexpath)

    oov = get_oov_words(txt, dct)

    if len(oov) != 0:
        print "Please remove all OOV word containing sents or add the words to dictonary before proceeding."
        for w in oov:
            print w
        raise SiReError("OOV words present, cannot continue.")

    args.dictionary = dct
    args.intype = "txt"
    utts = get_utts(txt, args)
    return utts
Esempio n. 23
0
def simple_festival_pos_predict(utt):
    if utt.txtloaded != True:
        raise SiReError(
            "We cannot be sure that we know each word id correctly! It may just be phonemes strung together!"
        )
    for word in utt.words:
        if word.id in [
                "of", "for", "in", "on", "that", "with", "by", "at", "from",
                "as", "if", "that", "against", "about", "before", "because",
                "if", "under", "after", "over", "into", "while", "without",
                "through", "new", "between", "among", "until", "per", "up",
                "down"
        ]:
            word.pos = "in"
        elif word.id == "to":
            word.pos = "to"
        elif word.id in [
                "the", "a", "an", "no", "some", "this", "that", "each",
                "another", "those", "every", "all", "any", "these", "both",
                "neither", "no", "many"
        ]:
            word.pos = "det"
        elif word.id in [
                "will", "may", "would", "can", "could", "should", "must",
                "ought", "might"
        ]:
            word.pos = "md"
        elif word.id in ["and", "but", "or", "plus", "yet", "nor"]:
            word.pos = "cc"
        elif word.id in ["who", "what", "where", "how", "when"]:
            word.pos = "wp"
        elif word.id in [
                "her", "his", "their", "its", "our", "their", "its", "mine"
        ]:
            word.pos = "pps"
        elif word.id in [
                "is", "am", "are", "was", "were", "has", "have", "had", "be"
        ]:
            word.pos = "aux"
        elif word.id in [".", ",", ":", ";", "\"", "'", "(", "?", ")", "!"]:
            word.pos = "punc"
        elif word.id in utt.phoneme_features.get_sil_phonemes():
            word.pos = "punc"
        else:
            word.pos = "content"
Esempio n. 24
0
def simple_festival_accent_predict(utt):
    for word in utt.words:
        if is_festival_content(word.pos):
            if len(word.syllables) == 1:
                word.syllables[0].accent = 1
            else:
                for syll in word.syllables:
                    if int(syll.stress) == 1:
                        syll.accent = 1
                    elif int(syll.stress) == 0 or int(syll.stress) == 2:
                        syll.accent = 0
                    else:
                        raise SiReError(
                            "Syllable has invalid stress value({0})!".format(
                                syll.stress))
        else:
            for syll in word.syllables:
                syll.accent = 0
Esempio n. 25
0
def dep_distance_in_arcs(n1, n2):
  #we include itself as if it is a parent of the other node we want to stop
  n1_parents = [n1]
  while n1.parent != None:
    n1_parents += [n1.parent]
    n1 = n1.parent
  n2_parents = [n2]
  while n2.parent != None:
    n2_parents += [n2.parent]
    n2 = n2.parent
  #The lowest common node is the one that is in both first encountered in one of the lists that is in the other
  #This is quadratic but we're never going to have enough levels for it to matter.
  for i1, p1 in enumerate(n1_parents):
    for i2, p2 in enumerate(n2_parents):
      if p1 == p2:
        #We can just add them together because when i1/i2==0 it is themselves.
        #So if p1 is the parent of p2, i1 == 0 and i2 the number of levels between them.
        return i1+i2
  print n1_parents
  print n2_parents
  raise SiReError("The two nodes are not in the same tree! Cannot find a distance!")
Esempio n. 26
0
def make_sylls(utt):
    sylls = []
    syll = {"id": "", "stress": 0, "phonemes": []}
    for i, p in enumerate(utt):
        #. marks midword syll boundaries
        #sp marks word boundaries and possible silence segments
        #sil marks silence segments between words
        if p["id"] in [".", "sil", "sp"]:
            if len(syll["phonemes"]) > 0:
                syll["start"] = syll["phonemes"][0]["start"]
                syll["end"] = syll["phonemes"][-1]["end"]
                sylls.append(syll)
            syll = {"id": "", "stress": 0, "phonemes": []}
            #Sil and sp are also markers of word boundaries and
            #may be their own entity so should be kept
            if p["id"] in ["sil", "sp"]:
                sylls.append({
                    "id": p["id"],
                    "stress": 0,
                    "phonemes": [p],
                    "start": p["start"],
                    "end": p["end"]
                })
        else:
            syll["phonemes"].append(p)
            syll["id"] += p["id"]
            if p["stress"] > 0:
                if syll["stress"] != 0:
                    raise SiReError(
                        "Syllable ({0}) already stressed! In utt ({1})".format(
                            syll, utt.id))
                syll["stress"] = p["stress"]
            if i == len(utt) - 1:
                syll["start"] = syll["phonemes"][0]["start"]
                syll["end"] = syll["phonemes"][-1]["end"]
                #If we're at the end of the utt the last syll is done
                sylls.append(syll)
    return sylls
Esempio n. 27
0
def try_split_words(utt):
    l = len(utt.words)
    #We should not try this if we have not gotten the word.id from txt.
    if utt.txtloaded != True:
        raise SiReError("Cannot split words if word ids not loaded from txt.")
    for word in utt.words:
        #End of word 's
        if word.id[-2:] == "'s":
            split_word(word, -2)
        #Contracted are's (e.g. we're)
        elif word.id[-3:] == "'re":
            split_word(word, -3)
        #Contracted not's (e.g. don't)
        elif word.id[-3:] == "n't":
            split_word(word, -2)
        #Contracted will's (e.g. it'll)
        elif word.id[-3:] == "'ll":
            split_word(word, -3)
        #Contracted have's (e.g. I've)
        elif word.id[-3:] == "'ve":
            split_word(word, -3)
        #Contracted I am
        elif word.id == "i'm":
            split_word(word, -2)
        #Contracted would or had (e.g. she'd)
        elif word.id[-2:] == "'d":
            split_word(word, -2)
        #Contracted going to
        elif word.id == "gonna":
            split_word(word, -2)
        #Contracted can not
        elif word.id == "cannot":
            split_word(word, -3)
        #Contracted want to
        elif word.id == "wanna":
            split_word(word, -2)
    if l == len(utt.words):
        print "Warning: Nothing to split in word."
Esempio n. 28
0
def load_txt(utt, txtpath, emphasis):
    txt = open(txtpath, "r").read()
    for x in ["!", ".", "?", ",", "--"]:
        txt = txt.replace(x, "")

    #We lower case because other methods use word name
    #and we don't care about case there.

    # if not using emphasis, lowercase like normal
    if not emphasis:
        txt = txt.lower()
    txt = txt.split()
    # if using emphasis, lower case all but words with two or more capitalised letters
    if emphasis:
        temp_txt = []
        upper_reg = re.compile(r'[A-Z][A-Z]+')
        for i in txt:
            if re.search(upper_reg, i) != None:
                temp_txt.append(i)
            else:
                i = i.lower()
                temp_txt.append(i)
        txt = temp_txt

    if len(txt) != utt.num_words_no_pau():
        for w in utt.words:
            print w.id
            print txt
        raise SiReError(
            "Text length ({0}) and number of words ({1}) in utt ({2}) does not match!"
            .format(len(txt), utt.num_words_no_pau(), utt.id))
    #Now replace the phoneme based ids with txt based.
    i = 0
    for w in utt.words:
        if w.id not in utt.phoneme_features.get_sil_phonemes():
            w.id = txt[i]
            i += 1
    utt.txtloaded = True
Esempio n. 29
0
def split_word(word, split_pos):
    utt = word.parent_utt
    split_more_than_one_phoneme = False
    #We usually only want to change one phoneme and this list checks for those.
    if word.syllables[-1].num_phonemes() != 1:
        s = word.syllables[-1]
        #This should also update the word itself with the new syll info.
        #End of word 's
        if word.id[-2:] == "'s":
            split_syll(s, ["s", "z"])
        #Contracted are's (e.g. we're)
        elif word.id[-3:] == "'re":
            #'r' is a bit... meh. In e.g. "you're" pronounced "jU@r" we kinda want to add a phony
            #before "r".
            #But this is not supported atm.
            split_syll(s, ["I@", "U@", "E@", "@", "r"],
                       ["I@", "U@", "E@", "O"])
        #Contracted not's (e.g. don't)
        elif word.id[-3:] == "n't":
            split_syll(s, ["n", "G", "t"])
        #Contracted will's (e.g. it'll)
        elif word.id[-3:] == "'ll":
            split_syll(s, ["lw", "l"])
        #Contracted have's (e.g. I've)
        elif word.id[-3:] == "'ve":
            split_syll(s, ["f", "v"])
        #Contracted I am
        elif word.id[-3:] == "i'm":
            split_syll(s, ["m"])
        #Contracted would or had (e.g. she'd)
        elif word.id[-2:] == "'d":
            split_syll(s, ["d", "G"], ["u"])
        #Contracted going to
        elif word.id == "gonna":
            if s.id in ["nu", "n@"]:
                split_more_than_one_phoneme = True
        #Contracted can not
        elif word.id == "cannot":
            #If the syll is "nQG" or "nQt" we're good and can split
            if s.id in ["nQG", "nQt"]:
                split_more_than_one_phoneme = True
        elif word.id == "wanna":
            #If the syll is "n@" we're good and can split
            if s.id == "n@":
                split_more_than_one_phoneme = True
    #If there is only one syllable with one word we have to add a phony syll.
    elif len(word.syllables) < 2:
        s = word.syllables[-1]
        #Contracted would or had (e.g. I'd)
        if word.id[-2:] == "'d":
            split_syll(s, ["aI"], ["aI"])

    if word.syllables[-1].num_phonemes(
    ) > 1 and split_more_than_one_phoneme != True:
        raise SiReError(
            "Cannot split a word {0} with final syllable {1} with more than one phoneme ({2}) as this has not been explicitly allowed!"
            .format(word.id, word.syllables[-1].id,
                    word.syllables[-1].num_phonemes()))
    w1 = utterance.Word()
    w1.id = word.id[:split_pos]
    w2 = utterance.Word()
    w2.id = word.id[split_pos:]
    print "Warning: Splitting word ({0}) into two ({1} and {2}). Is this correct?".format(
        word.id, w1.id, w2.id)
    #Start time
    w1.start = word.start_time()
    w2.start = word.syllables[-1].start_time()
    #End time
    w1.end = word.syllables[-2].end_time()
    w2.end = word.end_time()
    #Parent utt
    w1.parent_utt = utt
    w2.parent_utt = utt
    #Pos in utt
    #Slice out the original word
    w_p_u = word.pos_in_utt()
    utt.words = utt.words[:w_p_u] + [w1, w2] + utt.words[w_p_u + 1:]
    #Fix syllables and phonemes
    w1.syllables = word.syllables[:-1]
    w2.syllables = [word.syllables[-1]]
    w1.phonemes = []
    w2.phonemes = []
    for s in w1.syllables:
        s.parent_word = w1
        for p in s.phonemes:
            w1.phonemes.append(p)
            p.parent_word = w1
    w2.syllables[0].parent_word = w2
    for p in w2.syllables[0].phonemes:
        w2.phonemes.append(p)
        p.parent_word = w2
#  #Fix phonemes
#  w1.phonemes = word.phonemes[:-len(word.syllables[-1].phonemes)]
#  w2.phonemes = word.phonemes[-len(word.syllables[-1].phonemes):]
#  for p in w1.phonemes:
#    p.parent_word = w1
#  for p in w2.phonemes:
#    p.parent_word = w2

#Delete the original word. If all has gone well this should be fine.
    del word
Esempio n. 30
0
def split_syll(syll, acceptable_phoneme_set, word_spanning_phonemes=[]):
    #Makes life a bit easier
    utt = syll.parent_utt
    phoneme_features = utt.phoneme_features

    #A special case for phonemes which may have ended up spanning across what would normally
    #be two words or if all phonemes related to the "2nd" word has been deleted.
    #E.g. I@ in we're (w I@) or u in who'd (h u).
    #Or a deleted stop in I'd (aI).
    #In this case we add a new "phony" syllable with no duration. So it affects contexts
    #but does not take any frames.
    if syll.phonemes[-1].id in word_spanning_phonemes:
        phony = utterance.Syllable()
        phony.id = syll.phonemes[-1].id
        phony.stress = syll.stress
        phony.parent_utt = syll.parent_utt
        phony.parent_word = syll.parent_word
        #Slice in phony
        phony.parent_utt.syllables.insert(syll.pos_in_utt() + 1, phony)
        phony.parent_word.syllables.insert(syll.pos_in_word() + 1, phony)
        #We need to add a phony phoneme for e.g. start end time information
        phony_phone = utterance.Phoneme()
        phony_phone.start = syll.end_time()
        phony_phone.end = syll.end_time()
        phony.phonemes = [phony_phone]
        phony.vowel_id = syll.vowel_id
        return

    #You must know which phonemes are acceptable to replace.
    #Just a safety that things don't go horribly wrong. Disable this if you feel lucky.
    if syll.phonemes[-1].id not in acceptable_phoneme_set:
        raise SiReError(
            "Cannot split syllable {0} unless its last phoneme {1} exists in the acceptable set ({2})"
            .format(syll.id, syll.phonemes[-1].id, acceptable_phoneme_set))

    #ID
    s1 = utterance.Syllable()
    s1.id = syll.id[:-1]
    s2 = utterance.Syllable()
    s2.id = syll.id[-1]
    print "Warning: Splitting syll ({0}) into two {1} and {2}".format(
        syll.id, s1.id, s2.id)
    #Start pos
    s1.start = syll.start_time()
    s2.start = syll.phonemes[-1].start
    #End pos
    s1.end = syll.phonemes[-2].end
    s2.end = syll.end_time()
    #Stress
    #If we have stress on phonemes we use that, else we use the syll stress
    if syll.phonemes[0].stress == None:
        s1.stress = syll.stress
        s2.stress = syll.stress
    else:
        s = 0
        for p in syll.phonemes[:-1]:
            if int(p.stress) > 0:
                s = 1
        s1.stress = str(s)
        if int(syll.phonemes[-1].stress) > 0:
            s2.stress = str(1)
        else:
            s2.stress = str(0)
    #Pos in utt
    #Slice in syll
    s_p_u = syll.pos_in_utt()
    utt.syllables = utt.syllables[:s_p_u] + [s1, s2
                                             ] + utt.syllables[s_p_u + 1:]
    #Pos in word
    word = syll.parent_word
    s_p_w = syll.pos_in_word()
    #Slice in the new sylls
    word.syllables = word.syllables[:s_p_w] + [s1, s2]
    #Parents
    s1.parent_utt = utt
    s2.parent_utt = utt
    s1.parent_word = word
    s2.parent_word = word
    #Update child phonemes
    s1.phonemes = syll.phonemes[:-1]
    s2.phonemes = [syll.phonemes[-1]]
    for p in s1.phonemes:
        p.parent_syllable = s1
    s2.phonemes[0].parent_syllable = s2
    #Update vowel id
    if phoneme_features.is_vowel(s2.phonemes[0].id):
        s2.vowel_id = s2.phonemes[0].id
    else:
        s2.vowel_id = "novowel"
    v = "novowel"
    for p in s1.phonemes:
        if phoneme_features.is_vowel(p.id):
            v = p.id
            break
    s1.vowel_id = v

    #Delete the original syll.
    del syll