Esempio n. 1
0
def multiple_timelines():
    from query.models import LabeledInterview, LabeledPanel, LabeledCommercial
    from esper.rekall import qs_to_intrvllists, intrvllists_to_result, add_intrvllists_to_result

    interviews = LabeledInterview.objects \
            .annotate(fps=F('video__fps')) \
            .annotate(min_frame=F('fps') * F('start')) \
            .annotate(max_frame=F('fps') * F('end'))
    panels = LabeledPanel.objects \
            .annotate(fps=F('video__fps')) \
            .annotate(min_frame=F('fps') * F('start')) \
            .annotate(max_frame=F('fps') * F('end'))
    commercials = LabeledCommercial.objects \
            .annotate(fps=F('video__fps')) \
            .annotate(min_frame=F('fps') * F('start')) \
            .annotate(max_frame=F('fps') * F('end'))

    result = intrvllists_to_result(qs_to_intrvllists(interviews))
    add_intrvllists_to_result(result, qs_to_intrvllists(panels), color="blue")
    add_intrvllists_to_result(result, qs_to_intrvllists(commercials), color="purple")

    return result
Esempio n. 2
0
def shot_reverse_shot():
    from query.models import Face
    from rekall.video_interval_collection import VideoIntervalCollection
    from rekall.parsers import in_array, bbox_payload_parser
    from rekall.merge_ops import payload_plus
    from esper.rekall import intrvllists_to_result_bbox
    from rekall.payload_predicates import payload_satisfies
    from rekall.list_predicates import length_at_most
    from rekall.logical_predicates import and_pred, or_pred
    from rekall.spatial_predicates import scene_graph, make_region
    from rekall.temporal_predicates import before, after
    from rekall.bbox_predicates import height_at_least
    from esper.rekall import intrvllists_to_result, intrvllists_to_result_with_objects, add_intrvllists_to_result

    # If True, visualize results in a timeline
    TIMELINE_OUTPUT = False

    RIGHT_HALF_MIN_X = 0.45
    LEFT_HALF_MAX_X = 0.55
    MIN_FACE_HEIGHT = 0.4
    MAX_FACES_ON_SCREEN = 2
    # faces are sampled every 12 frames
    SAMPLING_RATE = 12
    ONE_SECOND = 24
    FOUR_SECONDS = 96
    TEN_SECONDS = 240

    # Annotate face rows with start and end frames and the video ID
    faces = Face.objects.annotate(min_frame=F('frame__number'),
                                  max_frame=F('frame__number'),
                                  video_id=F('frame__video_id'))

    right_half = make_region(RIGHT_HALF_MIN_X, 0.0, 1.0, 1.0)
    left_half = make_region(0.0, 0.0, LEFT_HALF_MAX_X, 1.0)

    graph = {
        'nodes': [{
            'name': 'face',
            'predicates': [height_at_least(MIN_FACE_HEIGHT)]
        }],
        'edges': []
    }

    vids = VideoIntervalCollection.from_django_qs(
        faces,
        with_payload=in_array(
            bbox_payload_parser(
                VideoIntervalCollection.django_accessor))).coalesce(
                    payload_merge_op=payload_plus)

    # Get sequences where there's a face on the right half of the screen and
    #   there are at most two faces
    faces_on_right = vids.filter(
        and_pred(payload_satisfies(length_at_most(MAX_FACES_ON_SCREEN)),
                 payload_satisfies(scene_graph(
                     graph, region=right_half)))).dilate(SAMPLING_RATE /
                                                         2).coalesce()

    # Get sequences where there's a face on the left half of the screen and
    #   there are at most two faces
    faces_on_left = vids.filter(
        and_pred(payload_satisfies(length_at_most(MAX_FACES_ON_SCREEN)),
                 payload_satisfies(scene_graph(
                     graph,
                     region=left_half)))).dilate(SAMPLING_RATE / 2).coalesce()

    # Sequences where faces on left up to one second before/after faces on left
    # Four seconds of buffer time between left-then-right/right-then-left
    #   segments
    # Only keep remaining sequences that last longer than ten seconds
    shot_reverse_shot = faces_on_right.merge(
        faces_on_left,
        predicate=or_pred(
            before(max_dist=ONE_SECOND), after(max_dist=ONE_SECOND),
            arity=2)).dilate(FOUR_SECONDS).coalesce().dilate(
                -1 * FOUR_SECONDS).filter_length(min_length=TEN_SECONDS)

    # Post-process to display in Esper widget
    if TIMELINE_OUTPUT:
        results = intrvllists_to_result(shot_reverse_shot.get_allintervals())
        add_intrvllists_to_result(results,
                                  faces_on_left.get_allintervals(),
                                  color='black')
        add_intrvllists_to_result(results,
                                  faces_on_right.get_allintervals(),
                                  color='green')
    else:
        results = intrvllists_to_result_with_objects(
            shot_reverse_shot.get_allintervals(), lambda payload, video: [])
    return results
def shot_reverse_shot_intensification():
    from query.models import Face
    from rekall.video_interval_collection import VideoIntervalCollection
    from rekall.parsers import in_array, bbox_payload_parser, merge_dict_parsers, named_payload
    from rekall.merge_ops import payload_plus, merge_named_payload, payload_first
    from esper.rekall import intrvllists_to_result_bbox
    from rekall.payload_predicates import payload_satisfies, on_name
    from rekall.list_predicates import length_at_most
    from rekall.logical_predicates import and_pred, or_pred
    from rekall.spatial_predicates import scene_graph, make_region
    from rekall.temporal_predicates import before, after
    from rekall.bbox_predicates import height_at_least
    from esper.rekall import intrvllists_to_result, intrvllists_to_result_with_objects, add_intrvllists_to_result

    # If True, visualize results in a timeline
    TIMELINE_OUTPUT = False

    RIGHT_HALF_MIN_X = 0.45
    LEFT_HALF_MAX_X = 0.55
    MIN_FACE_HEIGHT = 0.4
    MAX_FACES_ON_SCREEN = 2
    # faces are sampled every 12 frames
    SAMPLING_RATE = 12
    ONE_SECOND = 24
    FOUR_SECONDS = 96
    TEN_SECONDS = 240

    # Annotate face rows with start and end frames and the video ID
    faces = Face.objects.annotate(min_frame=F('frame__number'),
                                  max_frame=F('frame__number'),
                                  video_id=F('frame__video_id'),
                                  shot_scale=F('frame__shot_scale'))

    right_half = make_region(RIGHT_HALF_MIN_X, 0.0, 1.0, 1.0)
    left_half = make_region(0.0, 0.0, LEFT_HALF_MAX_X, 1.0)

    graph = {
        'nodes': [{
            'name': 'face',
            'predicates': [height_at_least(MIN_FACE_HEIGHT)]
        }],
        'edges': []
    }

    vids = VideoIntervalCollection.from_django_qs(
        faces,
        with_payload=merge_dict_parsers([
            named_payload(
                'faces',
                in_array(
                    bbox_payload_parser(
                        VideoIntervalCollection.django_accessor))),
            named_payload('shot_scale', in_array(lambda obj: obj.shot_scale))
        ])).coalesce(
            payload_merge_op=merge_named_payload({
                'faces': payload_plus,
                'shot_scale': payload_first
            }))

    def shot_scales_decreasing(scales):
        if len(scales) <= 1:
            return True
        cur_scale = scales[0]
        for scale in scales:
            if cur_scale == 1:
                cur_scale = scale
                continue
            if scale == 1:
                continue
            if scale < cur_scale:
                # Shot scale has gotten father here
                return False
        return True

    # Get sequences where there's a face on the right half of the screen and
    #   there are at most two faces
    # Payload is the faces in the first frame, and a list of the shot scales
    #   throughout the sequence
    # Filter out any sequences where the shot scale gets farther away over the sequence
    faces_on_right = vids.filter(
        and_pred(
            payload_satisfies(
                on_name('faces', length_at_most(MAX_FACES_ON_SCREEN))),
            payload_satisfies(
                on_name('faces', scene_graph(
                    graph,
                    region=right_half))))).dilate(SAMPLING_RATE / 2).coalesce(
                        payload_merge_op=merge_named_payload(
                            {
                                'faces': payload_first,
                                'shot_scale': payload_plus
                            })).filter(lambda intrvl: shot_scales_decreasing(
                                intrvl.get_payload()['shot_scale']))

    # Get sequences where there's a face on the left half of the screen and
    #   there are at most two faces
    # Payload is the faces in the first frame, and a list of the shot scales
    #   throughout the sequence
    faces_on_left = vids.filter(
        and_pred(
            payload_satisfies(
                on_name('faces', length_at_most(MAX_FACES_ON_SCREEN))),
            payload_satisfies(
                on_name('faces', scene_graph(
                    graph,
                    region=left_half))))).dilate(SAMPLING_RATE / 2).coalesce(
                        payload_merge_op=merge_named_payload(
                            {
                                'faces': payload_first,
                                'shot_scale': payload_plus
                            })).filter(lambda intrvl: shot_scales_decreasing(
                                intrvl.get_payload()['shot_scale']))

    # Sequences where faces on left up to one second before/after faces on left
    # Four seconds of buffer time between left-then-right/right-then-left
    #   segments
    # Filter sequences by decreasing shot sequences
    # Only keep remaining sequences that last longer than ten seconds
    shot_reverse_shot_intensification = faces_on_right.merge(
        faces_on_left, predicate=before(max_dist=ONE_SECOND)).set_union(
            faces_on_left.merge(faces_on_right,
                                predicate=before(max_dist=ONE_SECOND))
        ).dilate(FOUR_SECONDS).coalesce(
            payload_merge_op=merge_named_payload({
                'faces': payload_first,
                'shot_scale': payload_plus
            })).dilate(
                -1 *
                FOUR_SECONDS).filter(lambda intrvl: shot_scales_decreasing(
                    intrvl.get_payload()['shot_scale'])).filter_length(
                        min_length=TEN_SECONDS)

    def non_uniform(shot_scales):
        return (len(set(shot_scales)) > 2
                if 1 in set(shot_scales) else len(set(shot_scales)) > 1)

    # Finally, filter out any shot sequences where the shot scales are uniform
    shot_reverse_shot_intensification = shot_reverse_shot_intensification.filter(
        lambda intrvl: non_uniform(intrvl.get_payload()['shot_scale']))

    # Post-process to display in Esper widget
    if TIMELINE_OUTPUT:
        results = intrvllists_to_result(
            shot_reverse_shot_intensification.get_allintervals())
        add_intrvllists_to_result(results,
                                  faces_on_left.get_allintervals(),
                                  color='black')
        add_intrvllists_to_result(results,
                                  faces_on_right.get_allintervals(),
                                  color='green')
    else:
        results = intrvllists_to_result_with_objects(
            shot_reverse_shot_intensification.get_allintervals(),
            lambda payload, video: [])
    return results