Esempio n. 1
0
    def __init__(self, n_vocab, n_layers, n_units, typ="lstm"):
        super(RNNLM, self).__init__()
        with self.init_scope():
            self.embed = DL.EmbedID(n_vocab, n_units)
            self.rnn = chainer.ChainList(
                *[L.StatelessLSTM(n_units, n_units) for _ in range(n_layers)]) if typ == "lstm" \
                else chainer.ChainList(*[L.StatelessGRU(n_units, n_units) for _ in range(n_layers)])
            self.lo = L.Linear(n_units, n_vocab)

        for param in self.params():
            param.data[...] = np.random.uniform(-0.1, 0.1, param.data.shape)
        self.n_layers = n_layers
        self.n_units = n_units
        self.typ = typ
Esempio n. 2
0
 def __init__(
     self,
     eprojs,
     odim,
     dtype,
     dlayers,
     dunits,
     sos,
     eos,
     att,
     verbose=0,
     char_list=None,
     labeldist=None,
     lsm_weight=0.0,
     sampling_probability=0.0,
 ):
     super(Decoder, self).__init__()
     with self.init_scope():
         self.embed = DL.EmbedID(odim, dunits)
         self.rnn0 = (
             L.StatelessLSTM(dunits + eprojs, dunits)
             if dtype == "lstm"
             else L.StatelessGRU(dunits + eprojs, dunits)
         )
         for l in six.moves.range(1, dlayers):
             setattr(
                 self,
                 "rnn%d" % l,
                 L.StatelessLSTM(dunits, dunits)
                 if dtype == "lstm"
                 else L.StatelessGRU(dunits, dunits),
             )
         self.output = L.Linear(dunits, odim)
     self.dtype = dtype
     self.loss = None
     self.att = att
     self.dlayers = dlayers
     self.dunits = dunits
     self.sos = sos
     self.eos = eos
     self.verbose = verbose
     self.char_list = char_list
     # for label smoothing
     self.labeldist = labeldist
     self.vlabeldist = None
     self.lsm_weight = lsm_weight
     self.sampling_probability = sampling_probability