Esempio n. 1
0
def calc(var):

    # AVB: Create an output directory for this to store the output files
    outdir = "./Noelle/r01.5kBT4Ads/1000=3.2"
    if not os.path.exists(outdir):
        os.makedirs(outdir)

    # Setup constant
    time_step = 0.01
    loops = 30
    step_per_loop = 100

    # AVB: the parameters (that I usually use)
    a = 0.05
    r0 = 2.0 * a
    kBT = 4.0e-6
    vwf_type = 0
    collagen_type = 1
    monomer_mass = 0.01

    box_l = 32.0
    #print("Shear velocity:")
    #shear_velocity = float(input())
    #vy = box_l*shear_velocity
    vy = var
    print(vy)
    v = [0, vy, 0]

    # System setup

    system = 0

    system = System(box_l=[box_l, box_l, box_l])
    system.set_random_state_PRNG()
    np.random.seed(seed=system.seed)
    system.cell_system.skin = 0.4

    mpc = 20  # The number of monomers has been set to be 20 as default
    # Change this value for further simulations

    # Fene interaction
    fene = interactions.FeneBond(k=0.04, d_r_max=0.3)
    system.bonded_inter.add(fene)

    # Setup polymer of part_id 0 with fene bond
    # AVB: Notice the mode, max_tries and shield parameters for pruned self-avoiding random walk algorithm
    polymer.create_polymer(N_P=1,
                           MPC=mpc,
                           bond=fene,
                           bond_length=r0,
                           start_pos=[29.8, 16.0, 16.0],
                           mode=2,
                           max_tries=100,
                           shield=0.6 * r0)

    # AVB: setting the type of particles and changing mass of each monomer to 0.01
    system.part[:].type = vwf_type
    system.part[:].mass = monomer_mass

    # AVB: I suggest to add Lennard-Jones interaction between the monomers
    # AVB: to reproduce hydrophobicity
    # AVB: parameters for the potential (amplitude and cut-off redius)
    amplVwfVwf = 4.0 * kBT  # sometimes we change this to 2.0*kBT
    rcutVwfVwf = 1.5 * r0
    # AVB: the potential
    system.non_bonded_inter[vwf_type, vwf_type].lennard_jones.set_params(
        epsilon=amplVwfVwf,
        sigma=r0 / 1.122,
        shift="auto",
        cutoff=rcutVwfVwf,
        min=r0 * 0.6)

    print("Warming up the polymer chain.")
    ## For longer chains (>100) an extensive
    ## warmup is neccessary ...
    system.time_step = 0.002
    system.thermostat.set_langevin(kT=4.0e-6, gamma=1.0)
    # AVB: Here the Langevin thermostat is needed, because we have not yet initialized the LB-fluid.
    # AVB: And somehow it is necessary so that the polymer adopts the equilibrium conformation of the globule.
    # AVB: you may skip this step

    for i in range(100):
        system.force_cap = float(i) + 1
        system.integrator.run(100)

    print("Warmup finished.")
    system.force_cap = 0
    system.integrator.run(100)
    system.time_step = time_step
    system.integrator.run(500)

    # AVB: the following command turns the Langevin thermostat on in line 49
    system.thermostat.turn_off()

    # AVB: This command sets the velocities of all particles to zero
    system.part[:].v = [0, 0, 0]

    # AVB: The density was too small here. I have set 1.0 for now.
    # AVB: It would be necessary to recalculate, but the density of the liquid should not affect the movements of the polymer (this is how our physical model works).
    lbf = espressomd.lb.LBFluid(agrid=1,
                                dens=1.0,
                                visc=1.0e2,
                                tau=time_step,
                                fric=0.01)
    system.actors.add(lbf)
    system.thermostat.set_lb(kT=4.0e-6)

    # Setup boundaries
    walls = [lbboundaries.LBBoundary() for k in range(2)]
    walls[0].set_params(shape=shapes.Wall(normal=[1, 0, 0], dist=1.5),
                        velocity=v)
    walls[1].set_params(shape=shapes.Wall(normal=[-1, 0, 0], dist=-30.5))

    for wall in walls:
        system.lbboundaries.add(wall)

    print("Warming up the system with LB fluid.")
    system.integrator.run(5000)
    print("LB fluid warming finished.")
    # AVB: after this you should have a completely collapsed polymer globule
    # AVB: If you want to watch the process of globule formation in Paraview, just change 5000 to 0 in line 100

    N = 25
    x_coord = np.array([30] * N)
    y_coord = np.arange(14, 24, 5 / N)
    z_coord = np.arange(14, 24, 5 / N)
    for i in range(N):
        for j in range(N):
            system.part.add(id=i * N + j + 100,
                            pos=np.array([x_coord[i], y_coord[j], z_coord[i]]),
                            v=np.array([0, 0, 0]),
                            type=i * N + j + 100)

    all_collagen = range(100, (N - 1) * N + (N - 1) + 100)
    system.comfixed.types = all_collagen

    for i in range(100, (N - 1) * N + (N - 1) + 100):
        system.non_bonded_inter[vwf_type,
                                i].lennard_jones.set_params(epsilon=amplVwfVwf,
                                                            sigma=r0 / 1.122,
                                                            shift="auto",
                                                            cutoff=rcutVwfVwf,
                                                            min=r0 * 0.6)

    # configure correlators
    com_pos = ComPosition(ids=(0, ))
    c = Correlator(obs1=com_pos,
                   tau_lin=16,
                   tau_max=loops * step_per_loop,
                   delta_N=1,
                   corr_operation="square_distance_componentwise",
                   compress1="discard1")
    system.auto_update_accumulators.add(c)

    print("Sampling started.")
    print("lenth after warmup")
    print(
        system.analysis.calc_re(chain_start=0,
                                number_of_chains=1,
                                chain_length=mpc - 1)[0])

    lengths = []

    ylengths = []

    for i in range(loops):
        system.integrator.run(step_per_loop)
        system.analysis.append()
        lengths.append(
            system.analysis.calc_re(chain_start=0,
                                    number_of_chains=1,
                                    chain_length=mpc - 1)[0])
        lbf.print_vtk_velocity(outdir + "/" + str(vy) + "%04i.vtk" % i)
        system.part.writevtk(outdir + "/" + str(vy) + "vwf_all%04i.vtk" % i,
                             types=all_collagen)
        system.part.writevtk(outdir + "/" + str(vy) + "vwf_poly%04i.vtk" % i,
                             types=[0])
        cor = list(system.part[:].pos)
        y = []
        for l in cor:
            y.append(l[1])
        ylengths.append(max(y) - min(y))

        sys.stdout.write("\rSampling: %05i" % i)
        sys.stdout.flush()

    walls[0].set_params(shape=shapes.Wall(normal=[1, 0, 0], dist=1.5))
    walls[1].set_params(shape=shapes.Wall(normal=[-1, 0, 0], dist=-30.5))

    for i in range(100):
        system.integrator.run(step_per_loop)
        lengths.append(
            system.analysis.calc_re(chain_start=0,
                                    number_of_chains=1,
                                    chain_length=mpc - 1)[0])

    system.part.writevtk(outdir + "/" + str(vy) +
                         "vwf_all[r0=2,kBT=4]intheEND.vtk")

    with open(outdir + "/lengths" + str(vy) + ".dat", "a") as datafile:
        datafile.write("\n".join(map(str, lengths)))

    with open(outdir + "/lengthsY" + str(vy) + ".dat", "a") as datafile:
        datafile.write("\n".join(map(str, ylengths)))

    mean_vy = [(vy * 10000) / 32, sum(ylengths) / len(ylengths)]

    print("mean_vy")
    print(mean_vy)

    with open(outdir + "/mean_vy" + "2kBT_2r0" + ".dat", "a") as datafile:
        datafile.write(" ".join(map(str, mean_vy)))

    c.finalize()
    corrdata = c.result()
    corr = zeros((corrdata.shape[0], 2))
    corr[:, 0] = corrdata[:, 0]
    corr[:, 1] = (corrdata[:, 2] + corrdata[:, 3] + corrdata[:, 4]) / 3

    savetxt(outdir + "/msd_nom" + str(mpc) + ".dat", corr)

    with open(outdir + "/rh_out.dat", "a") as datafile:
        rh = system.analysis.calc_rh(chain_start=0,
                                     number_of_chains=1,
                                     chain_length=mpc - 1)
        datafile.write(str(mpc) + "    " + str(rh[0]) + "\n")
Esempio n. 2
0
                                                           sigma=r0 / 1.122,
                                                           shift="auto",
                                                           cutoff=rcutVwfVwf,
                                                           min=r0 * 0.6)

print("Warming up the polymer chain.")
## For longer chains (>100) an extensive
## warmup is neccessary ...
system.time_step = 0.002
system.thermostat.set_langevin(kT=4.0e-6, gamma=1.0)
# AVB: Here the Langevin thermostat is needed, because we have not yet initialized the LB-fluid.
# AVB: And somehow it is necessary so that the polymer adopts the equilibrium conformation of the globule.
# AVB: you may skip this step

for i in range(100):
    system.force_cap = float(i) + 1
    system.integrator.run(100)

print("Warmup finished.")
system.force_cap = 0
system.integrator.run(100)
system.time_step = time_step
system.integrator.run(500)

# AVB: the following command turns the Langevin thermostat on in line 49
system.thermostat.turn_off()

# AVB: This command sets the velocities of all particles to zero
system.part[:].v = [0, 0, 0]

# AVB: The density was too small here. I have set 1.0 for now.