Esempio n. 1
0
def tuningSystemFeatures(pool, namespace=''):
    # expects tonal descriptors and tuning features to be in pool
    tonalspace = 'tonal.'
    if namespace: tonalspace = namespace + '.tonal.'

    # 1-diatonic strength
    hpcp_highres = normalize(numpy.mean(pool[tonalspace + 'hpcp_highres'], 0))
    key, scale, strength, _ = standard.Key(
        profileType='diatonic')(hpcp_highres)
    pool.set(tonalspace + 'tuning_diatonic_strength', strength)

    # 2- high resolution features
    eqTempDeviation, ntEnergy, _ = standard.HighResolutionFeatures()(
        hpcp_highres)
    pool.set(tonalspace + 'tuning_equal_tempered_deviation', eqTempDeviation)
    pool.set(tonalspace + 'tuning_nontempered_energy_ratio', ntEnergy)

    # 3- THPCP
    hpcp = normalize(numpy.mean(pool[tonalspace + 'hpcp'], 0))
    hpcp_copy = hpcp[:]
    idx = numpy.argmax(hpcp)
    offset = len(hpcp) - idx
    hpcp[:offset] = hpcp_copy[idx:offset + idx]
    hpcp[offset:offset + idx] = hpcp_copy[0:idx]
    pool.set(tonalspace + 'thpcp', essentia.array(hpcp))
Esempio n. 2
0
                             minFrequency=min_frequency,
                             maxFrequency=max_frequency,
                             maxPeaks=max_peaks,
                             sampleRate=sample_rate)
 hpcp = estd.HPCP(bandPreset=band_preset,
                  harmonics = harmonics,
                  minFrequency=min_frequency,
                  maxFrequency=max_frequency,
                  nonLinear=non_linear,
                  normalized=normalize,
                  sampleRate=sample_rate,
                  weightType=weight_type,
                  windowSize=weight_window_size)
 key = estd.Key(numHarmonics=harmonics_key,
                slope=slope,
                usePolyphony=polyphony,
                useThreeChords=three_chords,
                profileType=profile)
 pool = e.Pool() # I don't need a pool!
 audio = loader()
 hpcp_list = []
 hpcp_average = [0] * 12
 for frame in estd.FrameGenerator(audio, frameSize=window_size, hopSize=hop_size):
     p1, p2 = speaks(rfft(window(frame)))
     hpcp_list.append(hpcp(p1,p2))
 for vector in hpcp_list:
     hpcp_average = np.add(hpcp_average,vector)
     # hpcp_average = np.divide(hpcp_average,np.max(hpcp_average))
 print hpcp_average    
 estimation = key(hpcp_average.tolist())
 result = estimation[0] + " " + estimation[1]
Esempio n. 3
0
# retrieve filenames from folder:
soundfiles = os.listdir(infolder)
if '.DS_Store' in soundfiles:
    soundfiles.remove('.DS_Store')

print "\nANALYSIS..."

for item in soundfiles:
    # Load the Algorithms:
    #loader = estd.MonoLoader(filename='/Users/angel/Desktop/sine.wav')
    #loader = estd.MonoLoader(filename=infolder + '/' +item)
    window = estd.Windowing(size=window_size, type="blackmanharris62")
    rfft = estd.Spectrum(size=window_size)
    speaks = estd.SpectralPeaks(orderBy="magnitude",
                                magnitudeThreshold=magnitude_threshold,
                                minFrequency=min_frequency,
                                maxFrequency=max_frequency,
                                maxPeaks=max_peaks)
    hpcp = estd.HPCP(size=12)
    key = estd.Key(useThreeChords=True, profileType=profile)
    pool = e.Pool()
    # Chain them together
    audio = loader()
    lll = []
    for frame in estd.FrameGenerator(audio,
                                     frameSize=window_size,
                                     hopSize=hop_size):
        p1, p2 = speaks(rfft(window(frame)))
        lll.append(hpcp(p1, p2))

        print kk
Esempio n. 4
0
                             sampleRate=sample_rate)
 hpcp = estd.HPCP(bandPreset=band_preset,
                  harmonics=harmonics,
                  maxFrequency=max_frequency,
                  minFrequency=min_frequency,
                  nonLinear=non_linear,
                  normalized=normalize,
                  referenceFrequency=reference_frequency,
                  sampleRate=sample_rate,
                  size=size,
                  splitFrequency=split_frequency,
                  weightType=weight_type,
                  windowSize=weight_window_size)
 key = estd.Key(numHarmonics=num_harmonics,
                pcpSize=size,
                profileType=profile_type,
                slope=slope,
                usePolyphony=use_polyphony,
                useThreeChords=use_three_chords)
 audio = loader()
 track += 1
 duration = len(audio)
 if analysis_portion > 0:
     if duration < (sample_rate * analysis_portion):
         number_of_frames = duration / hop_size
     else:
         number_of_frames = (sample_rate * analysis_portion) / hop_size
 else:
     number_of_frames = duration / hop_size
 frame = 0
 for bang in range(number_of_frames):
     spek = rfft(window(cut(audio)))
Esempio n. 5
0
def key_ecir(input_audio_file, output_text_file, **kwargs):

    if not kwargs:
        kwargs = KEY_SETTINGS

    loader = estd.MonoLoader(filename=input_audio_file,
                             sampleRate=kwargs["SAMPLE_RATE"])
    cut = estd.FrameCutter(frameSize=kwargs["WINDOW_SIZE"],
                           hopSize=kwargs["HOP_SIZE"])
    window = estd.Windowing(size=kwargs["WINDOW_SIZE"],
                            type=kwargs["WINDOW_SHAPE"])
    rfft = estd.Spectrum(size=kwargs["WINDOW_SIZE"])
    sw = estd.SpectralWhitening(maxFrequency=kwargs["MAX_HZ"],
                                sampleRate=kwargs["SAMPLE_RATE"])
    speaks = estd.SpectralPeaks(
        magnitudeThreshold=kwargs["SPECTRAL_PEAKS_THRESHOLD"],
        maxFrequency=kwargs["MAX_HZ"],
        minFrequency=kwargs["MIN_HZ"],
        maxPeaks=kwargs["SPECTRAL_PEAKS_MAX"],
        sampleRate=kwargs["SAMPLE_RATE"])
    hpcp = estd.HPCP(bandPreset=kwargs["HPCP_BAND_PRESET"],
                     splitFrequency=kwargs["HPCP_SPLIT_HZ"],
                     harmonics=kwargs["HPCP_HARMONICS"],
                     maxFrequency=kwargs["MAX_HZ"],
                     minFrequency=kwargs["MIN_HZ"],
                     nonLinear=kwargs["HPCP_NON_LINEAR"],
                     normalized=kwargs["HPCP_NORMALIZE"],
                     referenceFrequency=kwargs["HPCP_REFERENCE_HZ"],
                     sampleRate=kwargs["SAMPLE_RATE"],
                     size=kwargs["HPCP_SIZE"],
                     weightType=kwargs["HPCP_WEIGHT_TYPE"],
                     windowSize=kwargs["HPCP_WEIGHT_WINDOW_SEMITONES"],
                     maxShifted=kwargs["HPCP_SHIFT"])

    key = estd.Key(numHarmonics=kwargs["KEY_HARMONICS"],
                   pcpSize=kwargs["HPCP_SIZE"],
                   profileType=kwargs["KEY_PROFILE"],
                   slope=kwargs["KEY_SLOPE"],
                   usePolyphony=kwargs["KEY_POLYPHONY"],
                   useThreeChords=kwargs["KEY_USE_THREE_CHORDS"])

    audio = loader()

    if kwargs["HIGHPASS_CUTOFF"] is not None:
        hpf = estd.HighPass(cutoffFrequency=kwargs["HIGHPASS_CUTOFF"],
                            sampleRate=kwargs["SAMPLE_RATE"])
        audio = hpf(hpf(hpf(audio)))

    if kwargs["DURATION"] is not None:
        audio = audio[(kwargs["START_TIME"] *
                       kwargs["SAMPLE_RATE"]):(kwargs["DURATION"] *
                                               kwargs["SAMPLE_RATE"])]

    duration = len(audio)
    number_of_frames = int(duration / kwargs["HOP_SIZE"])
    chroma = []
    for bang in range(number_of_frames):
        spek = rfft(window(cut(audio)))
        p1, p2 = speaks(spek)  # p1 = frequencies; p2 = magnitudes
        if kwargs["SPECTRAL_WHITENING"]:
            p2 = sw(spek, p1, p2)
        vector = hpcp(p1, p2)
        sum_vector = np.sum(vector)

        if sum_vector > 0:
            if kwargs["DETUNING_CORRECTION"] == False or kwargs[
                    "DETUNING_CORRECTION_SCOPE"] == 'average':
                chroma.append(vector)
            elif kwargs["DETUNING_CORRECTION"] and kwargs[
                    "DETUNING_CORRECTION_SCOPE"] == 'frame':
                vector = _detuning_correction(vector, kwargs["HPCP_SIZE"])
                chroma.append(vector)
            else:
                print("SHIFT_SCOPE must be set to 'frame' or 'average'")

    chroma = np.mean(chroma, axis=0)

    if kwargs["DETUNING_CORRECTION"] and kwargs[
            "DETUNING_CORRECTION_SCOPE"] == 'average':
        chroma = _detuning_correction(chroma, kwargs["HPCP_SIZE"])
    key = key(chroma.tolist())
    confidence = (key[2], key[3])
    key = key[0] + '\t' + key[1]
    textfile = open(output_text_file, 'w')
    textfile.write(key + '\n')
    textfile.close()
    return key, confidence
Esempio n. 6
0
def get_key_attrs(hpcp):
    """Gets key and scale info from HPCP"""
    return es.Key(**key_params)(np.mean(hpcp, axis=0))
Esempio n. 7
0
def key_detector():
    reloj()
    # create directory to write the results with an unique time id:
    if results_to_file or results_to_csv:
        uniqueTime = str(int(tiempo()))
        wd = os.getcwd()
        temp_folder = wd + '/KeyDetection_' + uniqueTime
        os.mkdir(temp_folder)
    if results_to_csv:
        import csv
        csvFile = open(temp_folder + '/Estimation_&_PCP.csv', 'w')
        lineWriter = csv.writer(csvFile, delimiter=',')
    # retrieve files and filenames according to the desired settings:
    if analysis_mode == 'title':
        allfiles = os.listdir(audio_folder)
        if '.DS_Store' in allfiles: allfiles.remove('.DS_Store')
        for item in collection:
            collection[collection.index(item)] = ' > ' + item + '.'
        for item in genre:
            genre[genre.index(item)] = ' < ' + item + ' > '
        for item in modality:
            modality[modality.index(item)] = ' ' + item + ' < '
        analysis_files = []
        for item in allfiles:
            if any(e1 for e1 in collection if e1 in item):
                if any(e2 for e2 in genre if e2 in item):
                    if any(e3 for e3 in modality if e3 in item):
                        analysis_files.append(item)
        song_instances = len(analysis_files)
        print song_instances, 'songs matching the selected criteria:'
        print collection, genre, modality
        if limit_analysis == 0:
            pass
        elif limit_analysis < song_instances:
            analysis_files = sample(analysis_files, limit_analysis)
            print "taking", limit_analysis, "random samples...\n"
    else:
        analysis_files = os.listdir(audio_folder)
        if '.DS_Store' in analysis_files:
            analysis_files.remove('.DS_Store')
        print len(analysis_files), '\nsongs in folder.\n'
        groundtruth_files = os.listdir(groundtruth_folder)
        if '.DS_Store' in groundtruth_files:
            groundtruth_files.remove('.DS_Store')
    # ANALYSIS
    # ========
    if verbose:
        print "ANALYSING INDIVIDUAL SONGS..."
        print "============================="
    if confusion_matrix:
        matrix = 24 * 24 * [0]
    mirex_scores = []
    for item in analysis_files:
        # INSTANTIATE ESSENTIA ALGORITHMS
        # ===============================
        loader = estd.MonoLoader(filename=audio_folder + '/' + item,
                                 sampleRate=sample_rate)
        cut = estd.FrameCutter(frameSize=window_size, hopSize=hop_size)
        window = estd.Windowing(size=window_size, type=window_type)
        rfft = estd.Spectrum(size=window_size)
        sw = estd.SpectralWhitening(maxFrequency=max_frequency,
                                    sampleRate=sample_rate)
        speaks = estd.SpectralPeaks(magnitudeThreshold=magnitude_threshold,
                                    maxFrequency=max_frequency,
                                    minFrequency=min_frequency,
                                    maxPeaks=max_peaks,
                                    sampleRate=sample_rate)
        hpcp = estd.HPCP(bandPreset=band_preset,
                         harmonics=harmonics,
                         maxFrequency=max_frequency,
                         minFrequency=min_frequency,
                         nonLinear=non_linear,
                         normalized=normalize,
                         referenceFrequency=reference_frequency,
                         sampleRate=sample_rate,
                         size=hpcp_size,
                         splitFrequency=split_frequency,
                         weightType=weight_type,
                         windowSize=weight_window_size)
        key = estd.Key(numHarmonics=num_harmonics,
                       pcpSize=hpcp_size,
                       profileType=profile_type,
                       slope=slope,
                       usePolyphony=use_polyphony,
                       useThreeChords=use_three_chords)
        # ACTUAL ANALYSIS
        # ===============
        audio = loader()
        duration = len(audio)
        if skip_first_minute and duration > (sample_rate * 60):
            audio = audio[sample_rate * 60:]
            duration = len(audio)
        if first_n_secs > 0:
            if duration > (first_n_secs * sample_rate):
                audio = audio[:first_n_secs * sample_rate]
                duration = len(audio)
        if avoid_edges > 0:
            initial_sample = (avoid_edges * duration) / 100
            final_sample = duration - initial_sample
            audio = audio[initial_sample:final_sample]
            duration = len(audio)
        number_of_frames = duration / hop_size
        chroma = []
        for bang in range(number_of_frames):
            spek = rfft(window(cut(audio)))
            p1, p2 = speaks(spek)  # p1 are frequencies; p2 magnitudes
            if spectral_whitening:
                p2 = sw(spek, p1, p2)
            vector = hpcp(p1, p2)
            sum_vector = np.sum(vector)
            if sum_vector > 0:
                if shift_spectrum == False or shift_scope == 'average':
                    chroma.append(vector)
                elif shift_spectrum and shift_scope == 'frame':
                    vector = shift_vector(vector, hpcp_size)
                    chroma.append(vector)
                else:
                    print "shift_scope must be set to 'frame' or 'average'"
        chroma = np.mean(chroma, axis=0)
        if shift_spectrum and shift_scope == 'average':
            chroma = shift_vector(chroma, hpcp_size)
        estimation = key(chroma.tolist())
        result = estimation[0] + ' ' + estimation[1]
        confidence = estimation[2]
        if results_to_csv:
            chroma = list(chroma)
        # MIREX EVALUATION:
        # ================
        if analysis_mode == 'title':
            ground_truth = item[item.find(' = ') + 3:item.rfind(' < ')]
            if verbose and confidence < confidence_threshold:
                print item[:item.rfind(' = ')]
                print 'G:', ground_truth, '|| P:',
            if results_to_csv:
                title = item[:item.rfind(' = ')]
                lineWriter.writerow([
                    title, ground_truth, chroma[0], chroma[1], chroma[2],
                    chroma[3], chroma[4], chroma[5], chroma[6], chroma[7],
                    chroma[8], chroma[9], chroma[10], chroma[11], chroma[12],
                    chroma[13], chroma[14], chroma[15], chroma[16], chroma[17],
                    chroma[18], chroma[19], chroma[20], chroma[21], chroma[22],
                    chroma[23], chroma[24], chroma[25], chroma[26], chroma[27],
                    chroma[28], chroma[29], chroma[30], chroma[31], chroma[32],
                    chroma[33], chroma[34], chroma[35], result
                ])
            ground_truth = key_to_list(ground_truth)
            estimation = key_to_list(result)
            score = mirex_score(ground_truth, estimation)
            mirex_scores.append(score)
        else:
            filename_to_match = item[:item.rfind('.')] + '.txt'
            print filename_to_match
            if filename_to_match in groundtruth_files:
                groundtruth_file = open(
                    groundtruth_folder + '/' + filename_to_match, 'r')
                ground_truth = groundtruth_file.readline()
                if "\t" in ground_truth:
                    ground_truth = re.sub("\t", " ", ground_truth)
                if results_to_csv:
                    lineWriter.writerow([
                        filename_to_match, chroma[0], chroma[1], chroma[2],
                        chroma[3], chroma[4], chroma[5], chroma[6], chroma[7],
                        chroma[8], chroma[9], chroma[10], chroma[11],
                        chroma[12], chroma[13], chroma[14], chroma[15],
                        chroma[16], chroma[17], chroma[18], chroma[19],
                        chroma[20], chroma[21], chroma[22], chroma[23],
                        chroma[24], chroma[25], chroma[26], chroma[27],
                        chroma[28], chroma[29], chroma[30], chroma[31],
                        chroma[32], chroma[33], chroma[34], chroma[35], result
                    ])
                ground_truth = key_to_list(ground_truth)
                estimation = key_to_list(result)
                score = mirex_score(ground_truth, estimation)
                mirex_scores.append(score)
            else:
                print "FILE NOT FOUND... Skipping it from evaluation.\n"
                continue
        # CONFUSION MATRIX:
        # ================
        if confusion_matrix:
            xpos = (ground_truth[0] +
                    (ground_truth[0] * 24)) + (-1 *
                                               (ground_truth[1] - 1) * 24 * 12)
            ypos = ((estimation[0] - ground_truth[0]) +
                    (-1 * (estimation[1] - 1) * 12))
            matrix[(xpos + ypos)] = +matrix[(xpos + ypos)] + 1
        if verbose and confidence < confidence_threshold:
            print result, '(%.2f)' % confidence, '|| SCORE:', score, '\n'
        # WRITE RESULTS TO FILE:
        # =====================
        if results_to_file:
            with open(temp_folder + '/' + item[:-3] + 'txt', 'w') as textfile:
                textfile.write(result)
                textfile.close()
    if results_to_csv:
        csvFile.close()
    print len(mirex_scores), "files analysed in", reloj(), "secs.\n"
    if confusion_matrix:
        matrix = np.matrix(matrix)
        matrix = matrix.reshape(24, 24)
        print matrix
        if results_to_file:
            np.savetxt(
                temp_folder + '/_confusion_matrix.csv',
                matrix,
                fmt='%i',
                delimiter=',',
                header=
                'C,C#,D,Eb,E,F,F#,G,G#,A,Bb,B,Cm,C#m,Dm,Ebm,Em,Fm,F#m,Gm,G#m,Am,Bbm,Bm'
            )
    # MIREX RESULTS
    # =============
    evaluation_results = mirex_evaluation(mirex_scores)
    # WRITE INFO TO FILE
    # ==================
    if results_to_file:
        settings = "SETTINGS\n========\nAvoid edges ('%' of duration disregarded at both ends (0 = complete)) = " + str(
            avoid_edges
        ) + "\nfirst N secs = " + str(
            first_n_secs
        ) + "\nshift spectrum to fit tempered scale = " + str(
            shift_spectrum
        ) + "\nspectral whitening = " + str(
            spectral_whitening
        ) + "\nsample rate = " + str(sample_rate) + "\nwindow size = " + str(
            window_size
        ) + "\nhop size = " + str(hop_size) + "\nmagnitude threshold = " + str(
            magnitude_threshold
        ) + "\nminimum frequency = " + str(
            min_frequency
        ) + "\nmaximum frequency = " + str(
            max_frequency
        ) + "\nmaximum peaks = " + str(max_peaks) + "\nband preset = " + str(
            band_preset
        ) + "\nsplit frequency = " + str(
            split_frequency
        ) + "\nharmonics = " + str(harmonics) + "\nnon linear = " + str(
            non_linear
        ) + "\nnormalize = " + str(
            normalize
        ) + "\nreference frequency = " + str(
            reference_frequency
        ) + "\nhpcp size = " + str(
            hpcp_size
        ) + "\nweigth type = " + weight_type + "\nweight window size in semitones = " + str(
            weight_window_size
        ) + "\nharmonics key = " + str(num_harmonics) + "\nslope = " + str(
            slope) + "\nprofile = " + profile_type + "\npolyphony = " + str(
                use_polyphony) + "\nuse three chords = " + str(
                    use_three_chords)
        results_for_file = "\n\nEVALUATION RESULTS\n==================\nCorrect: " + str(
            evaluation_results[0]) + "\nFifth:  " + str(
                evaluation_results[1]) + "\nRelative: " + str(
                    evaluation_results[2]) + "\nParallel: " + str(
                        evaluation_results[3]) + "\nError: " + str(
                            evaluation_results[4]) + "\nWeighted: " + str(
                                evaluation_results[5])
        write_to_file = open(temp_folder + '/_SUMMARY.txt', 'w')
        write_to_file.write(settings)
        write_to_file.write(results_for_file)
        if analysis_mode == 'title':
            corpus = "\n\nANALYSIS CORPUS\n===============\n" + str(
                collection) + '\n' + str(
                    genre) + '\n' + str(modality) + '\n\n' + str(
                        len(mirex_scores)) + " files analysed.\n"
            write_to_file.write(corpus)
        write_to_file.close()