def hfc(filename): audio = MonoLoader(filename=filename, sampleRate=44100)() features = [] for frame in FrameGenerator(audio, frameSize = 1024, hopSize = 512): mag, phase =CartesianToPolar()(FFT()(Windowing(type='hann')(frame))) features.append(OnsetDetection(method='hfc')(mag, phase)) return Onsets()(array([features]),[1])
def calculateDownbeats(self, audio, bpm, phase): # Step 0: calculate the CSD (Complex Spectral Difference) features # and the associated onset detection function ON LOWPASSED SIGNAL spec = Spectrum(size=self.FRAME_SIZE) w = Windowing(type='hann') fft = FFT() c2p = CartesianToPolar() od_csd = OnsetDetection(method='complex') lowpass = LowPass(cutoffFrequency=1500) pool = Pool() # TODO test faster (numpy) way #audio = lowpass(audio) for frame in FrameGenerator(audio, frameSize=self.FRAME_SIZE, hopSize=self.HOP_SIZE): mag, ph = c2p(fft(w(frame))) pool.add('onsets.complex', od_csd(mag, ph)) # Step 1: normalise the data using an adaptive mean threshold novelty_mean = self.adaptive_mean(pool['onsets.complex'], 16.0) # Step 2: half-wave rectify the result novelty_hwr = (pool['onsets.complex'] - novelty_mean).clip(min=0) # Step 7 (experimental): Determine downbeat locations as subsequence with highest complex spectral difference for i in range(4): phase_frames = (phase * 44100.0) / (512.0) frames = ( np.round( np.arange(phase_frames + i * self.numFramesPerBeat(bpm), np.size(novelty_hwr), 4 * self.numFramesPerBeat(bpm))).astype('int') )[: -1] # Discard last value to prevent reading beyond array (last value rounded up for example) pool.add('output.downbeat', np.sum(novelty_hwr[frames]) / np.size(frames)) plt.subplot(4, 1, i + 1) plt.plot(novelty_hwr) for f in frames: plt.axvline(x=f) print pool['output.downbeat'] downbeatIndex = np.argmax(pool['output.downbeat']) plt.show() # experimental return 1.0 * self.beats[downbeatIndex::4]
def run(self, audio): # Calculate the melflux onset detection function pool = Pool() w = Windowing(type='hann') fft = np.fft.fft od_flux = OnsetDetection(method='melflux') for frame in FrameGenerator(audio, frameSize=self.FRAME_SIZE, hopSize=self.HOP_SIZE): pool.add('audio.windowed_frames', w(frame)) fft_result = fft(pool['audio.windowed_frames']).astype('complex64') fft_result_mag = np.absolute(fft_result) fft_result_ang = np.angle(fft_result) self.fft_mag_1024_512 = fft_result_mag self.fft_phase_1024_512 = fft_result_ang for mag, phase in zip(fft_result_mag, fft_result_ang): pool.add('onsets.complex', od_flux(mag, phase)) odf = pool['onsets.complex'] # Given the ODF, calculate the tempo and the phase tempo, tempo_curve, phase, phase_curve = BeatTracker.get_tempo_and_phase_from_odf( odf, self.HOP_SIZE) # Calculate the beat annotations spb = 60. / tempo #seconds per beat beats = (np.arange(phase, (np.size(audio) / self.SAMPLE_RATE) - spb + phase, spb).astype('single')) # Store all the results self.bpm = tempo self.phase = phase self.beats = beats self.onset_curve = BeatTracker.hwr(pool['onsets.complex'])
def f_essentia_extract(Audio): ## METODOS DE LIBRERIA QUE DETECTAN DONDE OCURRE CADA NOTA RESPECTO AL TIEMPO od2 = OnsetDetection(method='complex') # Let's also get the other algorithms we will need, and a pool to store the results w = Windowing(type='hann') fft = FFT() # this gives us a complex FFT c2p = CartesianToPolar( ) # and this turns it into a pair (magnitude, phase) pool = essentia.Pool() # Computing onset detection functions. for frame in FrameGenerator(Audio, frameSize=1024, hopSize=512): mag, phase, = c2p(fft(w(frame))) pool.add('features.complex', od2(mag, phase)) ## inicio de cada "nota" onsets = Onsets() tiempos_detectados_essentia = onsets( essentia.array([pool['features.complex']]), [1]) #print(tiempos_detectados_essentia) return tiempos_detectados_essentia
def run(self, audio): def numFramesPerBeat(bpm): return (60.0 * self.SAMPLE_RATE) / (self.HOP_SIZE * bpm) def autocorr(x): result = np.correlate(x, x, mode='full') return result[result.size / 2:] def adaptive_mean(x, N): return np.convolve(x, [1.0] * int(N), mode='same') / N # Step 0: calculate the CSD (Complex Spectral Difference) features # and the associated onset detection function spec = Spectrum(size=self.FRAME_SIZE) w = Windowing(type='hann') fft = np.fft.fft c2p = CartesianToPolar() od_csd = OnsetDetection(method='melflux') pool = Pool() for frame in FrameGenerator(audio, frameSize=self.FRAME_SIZE, hopSize=self.HOP_SIZE): pool.add('audio.windowed_frames', w(frame)) fft_result = fft(pool['audio.windowed_frames']).astype('complex64') fft_result_mag = np.absolute(fft_result) fft_result_ang = np.angle(fft_result) for mag, phase in zip(fft_result_mag, fft_result_ang): pool.add('onsets.complex', od_csd(mag, phase)) # Step 1: normalise the data using an adaptive mean threshold novelty_mean = adaptive_mean(pool['onsets.complex'], 16.0) # Step 2: half-wave rectify the result novelty_hwr = (pool['onsets.complex'] - novelty_mean).clip(min=0) # Step 3: then calculate the autocorrelation of this signal novelty_autocorr = autocorr(novelty_hwr) # Step 4: Sum over constant intervals to detect most likely BPM valid_bpms = np.arange(self.minBpm, self.maxBpm, self.stepBpm) for bpm in valid_bpms: frames = ( np.round( np.arange(0, np.size(novelty_autocorr), numFramesPerBeat(bpm))).astype('int') )[: -1] # Discard last value to prevent reading beyond array (last value rounded up for example) pool.add('output.bpm', np.sum(novelty_autocorr[frames]) / np.size(frames)) bpm = valid_bpms[np.argmax(pool['output.bpm'])] # Step 5: Calculate phase information valid_phases = np.arange(0.0, 60.0 / bpm, 0.001) # Valid phases in SECONDS for phase in valid_phases: # Convert phase from seconds to frames phase_frames = (phase * 44100.0) / (512.0) frames = ( np.round( np.arange(phase_frames, np.size(novelty_hwr), numFramesPerBeat(bpm))).astype('int') )[: -1] # Discard last value to prevent reading beyond array (last value rounded up for example) pool.add('output.phase', np.sum(novelty_hwr[frames]) / np.size(frames)) phase = valid_phases[np.argmax(pool['output.phase'])] # Step 6: Determine the beat locations spb = 60. / bpm #seconds per beat beats = (np.arange(phase, (np.size(audio) / 44100) - spb + phase, spb).astype('single')) # Store all the results self.bpm = bpm self.phase = phase self.beats = beats
def feature_allframes(song, frame_indexer=None): audio = song.audio beats = song.beats fft_result_mag = song.fft_mag_1024_512 fft_result_ang = song.fft_phase_1024_512 od_hfc = OnsetDetection(method='flux') pool = Pool() HOP_SIZE = 512 for mag, phase in zip(fft_result_mag, fft_result_ang): pool.add('onsets.flux', od_hfc(mag, phase)) # Normalize and half-rectify onset detection curve def adaptive_mean(x, N): return np.convolve(x, [1.0] * int(N), mode='same') / N novelty_mean = adaptive_mean(pool['onsets.flux'], 16.0) novelty_hwr = (pool['onsets.flux'] - novelty_mean).clip(min=0) novelty_hwr = novelty_hwr / np.average(novelty_hwr) # For every frame in frame_indexer, if frame_indexer is None: frame_indexer = range( 4, len(beats) - 1 ) # Exclude first frame, because it has no predecessor to calculate difference with # Feature: correlation between current frame onset detection f and of previous frame # Feature: correlation between current frame onset detection f and of next frame # Feature: diff between correlation between current frame onset detection f and corr cur and next onset_integrals = np.zeros((2 * len(beats), 1)) frame_i = (np.array(beats) * 44100.0 / HOP_SIZE).astype('int') onset_correlations = np.zeros((len(beats), 21)) for i in [ i for i in range(len(beats)) if (i in frame_indexer) or (i + 1 in frame_indexer) or ( i - 1 in frame_indexer) or (i - 2 in frame_indexer) or ( i - 3 in frame_indexer) or (i - 4 in frame_indexer) or ( i - 5 in frame_indexer) or ( i - 6 in frame_indexer) or (i - 7 in frame_indexer) ]: half_i = int((frame_i[i] + frame_i[i + 1]) / 2) cur_frame_1st_half = novelty_hwr[frame_i[i]:half_i] cur_frame_2nd_half = novelty_hwr[half_i:frame_i[i + 1]] onset_integrals[2 * i] = np.sum(cur_frame_1st_half) onset_integrals[2 * i + 1] = np.sum(cur_frame_2nd_half) # Step 2: Calculate the cosine distance between the MFCC values for i in frame_indexer: # Correlation gives symmetrical results, which is not necessarily what we want. # Better: integral of sum, multiplied by sign of difference # If integral large a, b large but difference positive (a-b): a contains more onsets than onset_correlations[i][0] = max( np.correlate(novelty_hwr[frame_i[i - 1]:frame_i[i]], novelty_hwr[frame_i[i]:frame_i[i + 1]], mode='valid')) # Only 1 value onset_correlations[i][1] = max( np.correlate(novelty_hwr[frame_i[i]:frame_i[i + 1]], novelty_hwr[frame_i[i + 1]:frame_i[i + 2]], mode='valid')) # Only 1 value onset_correlations[i][2] = max( np.correlate(novelty_hwr[frame_i[i]:frame_i[i + 1]], novelty_hwr[frame_i[i + 2]:frame_i[i + 3]], mode='valid')) # Only 1 value onset_correlations[i][3] = max( np.correlate(novelty_hwr[frame_i[i]:frame_i[i + 1]], novelty_hwr[frame_i[i + 3]:frame_i[i + 4]], mode='valid')) # Only 1 value # Difference in integrals of novelty curve between frames # Quantifies the difference in number and prominence of onsets in this frame onset_correlations[i][4] = onset_integrals[2 * i] - onset_integrals[2 * i - 1] onset_correlations[i][5] = onset_integrals[ 2 * i + 2] + onset_integrals[2 * i + 3] - onset_integrals[ 2 * i - 1] - onset_integrals[2 * i - 2] for j in range(1, 16): onset_correlations[i][ 5 + j] = onset_integrals[2 * i + j] - onset_integrals[2 * i] # Include the MFCC coefficients as features result = onset_correlations[frame_indexer] return preprocessing.scale(result)
def feature_allframes(audio, beats, frame_indexer = None): # Initialise the algorithms FRAME_SIZE = 1024 HOP_SIZE = 512 spec = Spectrum(size = FRAME_SIZE) w = Windowing(type = 'hann') fft = np.fft.fft od_csd = OnsetDetection(method = 'complex') od_hfc = OnsetDetection(method = 'flux') pool = Pool() # Calculate onset detection curve on audio for frame in FrameGenerator(audio, frameSize = FRAME_SIZE, hopSize = HOP_SIZE): pool.add('windowed_frames', w(frame)) fft_result = fft(pool['windowed_frames']).astype('complex64') fft_result_mag = np.absolute(fft_result) fft_result_ang = np.angle(fft_result) for mag,phase in zip(fft_result_mag, fft_result_ang): pool.add('onsets.flux', od_hfc(mag, phase)) # Normalize and half-rectify onset detection curve def adaptive_mean(x, N): return np.convolve(x, [1.0]*int(N), mode='same')/N novelty_mean = adaptive_mean(pool['onsets.flux'], 16.0) novelty_hwr = (pool['onsets.flux'] - novelty_mean).clip(min=0) novelty_hwr = novelty_hwr / np.average(novelty_hwr) # For every frame in frame_indexer, if frame_indexer is None: frame_indexer = list(range(4,len(beats) - 1)) # Exclude first frame, because it has no predecessor to calculate difference with # Feature: correlation between current frame onset detection f and of previous frame # Feature: correlation between current frame onset detection f and of next frame # Feature: diff between correlation between current frame onset detection f and corr cur and next onset_integrals = np.zeros((2 * len(beats), 1)) frame_i = (np.array(beats) * 44100.0/ HOP_SIZE).astype('int') onset_correlations = np.zeros((len(beats), 21)) for i in [i for i in range(len(beats)) if (i in frame_indexer) or (i+1 in frame_indexer) or (i-1 in frame_indexer) or (i-2 in frame_indexer) or (i-3 in frame_indexer) or (i-4 in frame_indexer) or (i-5 in frame_indexer) or (i-6 in frame_indexer) or (i-7 in frame_indexer)]: half_i = int((frame_i[i] + frame_i[i+1]) / 2) cur_frame_1st_half = novelty_hwr[frame_i[i] : half_i] cur_frame_2nd_half = novelty_hwr[half_i : frame_i[i+1]] onset_integrals[2*i] = np.sum(cur_frame_1st_half) onset_integrals[2*i + 1] = np.sum(cur_frame_2nd_half) # Step 2: Calculate the cosine distance between the MFCC values for i in frame_indexer: onset_correlations[i][0] = max(np.correlate(novelty_hwr[frame_i[i-1] : frame_i[i]], novelty_hwr[frame_i[i] : frame_i[i+1]], mode='valid')) # Only 1 value onset_correlations[i][1] = max(np.correlate(novelty_hwr[frame_i[i] : frame_i[i+1]], novelty_hwr[frame_i[i+1] : frame_i[i+2]], mode='valid')) # Only 1 value onset_correlations[i][2] = max(np.correlate(novelty_hwr[frame_i[i] : frame_i[i+1]], novelty_hwr[frame_i[i+2] : frame_i[i+3]], mode='valid')) # Only 1 value onset_correlations[i][3] = max(np.correlate(novelty_hwr[frame_i[i] : frame_i[i+1]], novelty_hwr[frame_i[i+3] : frame_i[i+4]], mode='valid')) # Only 1 value # Difference in integrals of novelty curve between frames # Quantifies the difference in number and prominence of onsets in this frame onset_correlations[i][4] = onset_integrals[2*i] - onset_integrals[2*i-1] onset_correlations[i][5] = onset_integrals[2*i+2] + onset_integrals[2*i+3] - onset_integrals[2*i-1] - onset_integrals[2*i-2] for j in range(1,16): onset_correlations[i][5 + j] = onset_integrals[2*i + j] - onset_integrals[2*i] # Include the MFCC coefficients as features result = onset_correlations[frame_indexer] return preprocessing.scale(result)
ZeroCrossingRate, OddToEvenHarmonicEnergyRatio, EnergyBand, MetadataReader, OnsetDetection, Onsets, CartesianToPolar, FFT, MFCC, SingleGaussian from build_map import build_map sampleRate = 44100 frameSize = 2048 hopSize = 1024 windowType = "hann" mean = Mean() keyDetector = essentia.standard.Key(pcpSize=12) spectrum = Spectrum() window = Windowing(size=frameSize, zeroPadding=0, type=windowType) mfcc = MFCC() gaussian = SingleGaussian() od = OnsetDetection(method='hfc') fft = FFT() # this gives us a complex FFT c2p = CartesianToPolar() # and this turns it into a pair (magnitude, phase) onsets = Onsets(alpha=1) # dissonance spectralPeaks = SpectralPeaks(sampleRate=sampleRate, orderBy='frequency') dissonance = Dissonance() # barkbands barkbands = BarkBands(sampleRate=sampleRate) # zero crossing rate # zerocrossingrate = ZeroCrossingRate() # odd-to-even harmonic energy ratio
def run(self, audio): # TODO put this in some util class # Step 0: calculate the CSD (Complex Spectral Difference) features # and the associated onset detection function spec = Spectrum(size=self.FRAME_SIZE) w = Windowing(type='hann') fft = FFT() c2p = CartesianToPolar() od_csd = OnsetDetection(method='complex') pool = Pool() # TODO test faster (numpy) way for frame in FrameGenerator(audio, frameSize=self.FRAME_SIZE, hopSize=self.HOP_SIZE): mag, phase = c2p(fft(w(frame))) pool.add('onsets.complex', od_csd(mag, phase)) # Step 1: normalise the data using an adaptive mean threshold novelty_mean = self.adaptive_mean(pool['onsets.complex'], 16.0) # Step 2: half-wave rectify the result novelty_hwr = (pool['onsets.complex'] - novelty_mean).clip(min=0) # Step 3: then calculate the autocorrelation of this signal novelty_autocorr = self.autocorr(novelty_hwr) # Step 4: Sum over constant intervals to detect most likely BPM valid_bpms = np.arange(self.minBpm, self.maxBpm, self.stepBpm) for bpm in valid_bpms: frames = ( np.round( np.arange(0, np.size(novelty_autocorr), self.numFramesPerBeat(bpm))).astype('int') )[: -1] # Discard last value to prevent reading beyond array (last value rounded up for example) pool.add('output.bpm', np.sum(novelty_autocorr[frames]) / np.size(frames)) bpm = valid_bpms[np.argmax(pool['output.bpm'])] # Step 5: Calculate phase information valid_phases = np.arange(0.0, 60.0 / bpm, 0.001) # Valid phases in SECONDS for phase in valid_phases: # Convert phase from seconds to frames phase_frames = (phase * 44100.0) / (512.0) frames = ( np.round( np.arange(phase_frames, np.size(novelty_hwr), self.numFramesPerBeat(bpm))).astype('int') )[: -1] # Discard last value to prevent reading beyond array (last value rounded up for example) pool.add('output.phase', np.sum(novelty_hwr[frames]) / np.size(frames)) phase = valid_phases[np.argmax(pool['output.phase'])] print 'PHASE', phase # Step 6: Determine the beat locations spb = 60. / bpm #seconds per beat beats = (np.arange(phase, (np.size(audio) / 44100) - spb + phase, spb).astype('single')) # Store all the results self.bpm = bpm self.phase = phase self.beats = beats self.downbeats = self.calculateDownbeats(audio, bpm, phase)