Esempio n. 1
0
def _make_image_labels_dataset(img,
                               images_dir,
                               num_samples=4,
                               num_objects_per_sample=3):
    exts = [".jpg", ".png"]

    samples = []
    for idx in range(num_samples):
        filepath = os.path.join(images_dir,
                                "%06d%s" % (idx, exts[idx % len(exts)]))
        etai.write(img, filepath)

        image_labels = etai.ImageLabels()

        _label = random.choice(["sun", "rain", "snow"])
        image_labels.add_attribute(etad.CategoricalAttribute("label", _label))

        for _ in range(num_objects_per_sample):
            _label = random.choice(["cat", "dog", "bird", "rabbit"])
            _xtl = 0.8 * random.random()
            _ytl = 0.8 * random.random()
            _bounding_box = etag.BoundingBox.from_coords(
                _xtl, _ytl, _xtl + 0.2, _ytl + 0.2)
            image_labels.add_object(
                etao.DetectedObject(label=_label, bounding_box=_bounding_box))

        samples.append(
            fo.Sample(
                filepath=filepath,
                ground_truth=fo.ImageLabels(labels=image_labels),
            ))

    dataset = fo.Dataset()
    dataset.add_samples(samples)
    return dataset
Esempio n. 2
0
    def to_detected_object(self, name=None):
        """Returns an ``eta.core.objects.DetectedObject`` representation of
        this instance.

        Args:
            name (None): the name of the label field

        Returns:
            an ``eta.core.objects.DetectedObject``
        """
        label = self.label
        index = self.index

        # pylint: disable=unpacking-non-sequence
        tlx, tly, w, h = self.bounding_box
        brx = tlx + w
        bry = tly + h
        bounding_box = etag.BoundingBox.from_coords(tlx, tly, brx, bry)

        mask = self.mask
        confidence = self.confidence

        # pylint: disable=no-member
        attrs = _to_eta_attributes(self.attributes)

        return etao.DetectedObject(
            label=label,
            index=index,
            bounding_box=bounding_box,
            mask=mask,
            confidence=confidence,
            name=name,
            attrs=attrs,
        )
Esempio n. 3
0
def _parse_bdd_annotation(d, frame_size):
    image_labels = etai.ImageLabels()

    # Frame attributes
    frame_attrs = d.get("attributes", {})
    image_labels.attrs = _make_attributes(frame_attrs)

    # Objects
    objects = d.get("labels", [])
    for obj in objects:
        if "box2d" not in obj:
            continue

        label = obj["category"]

        bbox = obj["box2d"]
        bounding_box = etag.BoundingBox.from_abs_coords(
            bbox["x1"],
            bbox["y1"],
            bbox["x2"],
            bbox["y2"],
            frame_size=frame_size,
        )

        obj_attrs = obj.get("attributes", {})
        attrs = _make_attributes(obj_attrs)

        image_labels.add_object(
            etao.DetectedObject(
                label=label,
                bounding_box=bounding_box,
                attrs=attrs,
            ))

    return fol.ImageLabels(labels=image_labels)
Esempio n. 4
0
    def to_detected_object(self, name=None):
        """Returns an ``eta.core.objects.DetectedObject`` representation of
        this instance.

        Args:
            name (None): the name of the label field

        Returns:
            an ``eta.core.objects.DetectedObject``
        """
        label = self.label

        # pylint: disable=unpacking-non-sequence
        tlx, tly, w, h = self.bounding_box
        brx = tlx + w
        bry = tly + h
        bounding_box = etag.BoundingBox.from_coords(tlx, tly, brx, bry)

        confidence = self.confidence

        # pylint: disable=no-member
        attrs = etad.AttributeContainer()
        for attr_name, attr in self.attributes.items():
            attrs.add(etad.CategoricalAttribute(attr_name, attr.value))

        return etao.DetectedObject(
            label=label,
            bounding_box=bounding_box,
            confidence=confidence,
            name=name,
            attrs=attrs,
        )
Esempio n. 5
0
def _parse_bdd_object(d, frame_size):
    label = d["category"]

    box2d = d["box2d"]
    bounding_box = etag.BoundingBox.from_abs_coords(
        box2d["x1"],
        box2d["y1"],
        box2d["x2"],
        box2d["y2"],
        frame_size=frame_size,
        clamp=False,
    )

    obj_attrs = d.get("attributes", {})
    attrs = _make_attributes(obj_attrs)

    return etao.DetectedObject(
        label=label, bounding_box=bounding_box, attrs=attrs,
    )
Esempio n. 6
0
def to_detected_object(label, det, image):
    ''' convert the ObjectDetector detection to an eta DetectedObject.

    Args:
        label is the label of the object
        det is a 5-vector with topleft-x,y bottomright-x,y confidence as values
        image is the original image that was use to detect this object
    '''
    sx, sy, ex, ey, conf = det
    return etao.DetectedObject(label,
                               etag.BoundingBox(
                                   etag.RelativePoint.from_abs(sx,
                                                               sy,
                                                               img=image),
                                   etag.RelativePoint.from_abs(ex,
                                                               ey,
                                                               img=image),
                               ),
                               confidence=conf)
Esempio n. 7
0
    def to_detected_object(self, frame_size):
        """Returns a ``eta.core.objects.DetectedObject`` representation of the
        box.

        Args:
            frame_size: the ``(width, height)`` of the image

        Returns:
            a ``eta.core.objects.DetectedObject``
        """
        label = self.label

        bounding_box = etag.BoundingBox.from_abs_coords(self.xtl,
                                                        self.ytl,
                                                        self.xbr,
                                                        self.ybr,
                                                        frame_size=frame_size)
        attrs = etad.AttributeContainer(
            attrs=[a.to_eta_attribute() for a in self.attributes])

        return etao.DetectedObject(label=label,
                                   bounding_box=bounding_box,
                                   attrs=attrs)