Esempio n. 1
0
def translate_ids(trees_file, outgroup_lineage="Bacteria"):
    for line in open(trees_file):
        if not line.strip() or line.startswith('#'):
            continue

        t = PhyloTree(line, sp_naming_function=spname)
        #t.set_outgroup(t.get_midpoint_outgroup())

        for lf in t:
            lf.add_features(coded_name=lf.name)
            if lf.name in NAME2SP:
                lf.name = "%s {%s}" % (lf.name, NAME2SP[lf.name])

        t.dist = 0
        ncbi.connect_database()
        name2sp = ncbi.get_name_translator(t.get_species())
        for lf in t.iter_leaves():
            lf.add_features(taxid=name2sp.get(lf.species, 0))

        t.set_outgroup(t.search_nodes(taxid=9606)[0])
        ncbi.annotate_tree(t, attr_name='taxid')
        t.set_outgroup(
            t.get_common_ancestor(
                [lf for lf in t if outgroup_lineage in lf.named_lineage]))
        ncbi.annotate_tree(t, attr_name='taxid')

        #print t.write(features=[])
        #print t.write()
        yield t
Esempio n. 2
0
def translate_ids(trees_file, outgroup_lineage="Bacteria"):
    for line in open(trees_file):
        if not line.strip() or line.startswith('#'):
            continue

        t = PhyloTree(line, sp_naming_function=spname)
        #t.set_outgroup(t.get_midpoint_outgroup())

        for lf in t:
            lf.add_features(coded_name = lf.name)            
            if lf.name in NAME2SP:
                lf.name = "%s {%s}" %(lf.name, NAME2SP[lf.name])
         
        t.dist = 0
        ncbi.connect_database()
        name2sp = ncbi.get_name_translator(t.get_species())
        for lf in t.iter_leaves():
            lf.add_features(taxid=name2sp.get(lf.species, 0))

        t.set_outgroup(t.search_nodes(taxid=9606)[0])
        ncbi.annotate_tree(t, attr_name='taxid')
        t.set_outgroup(t.get_common_ancestor([lf for lf in t if outgroup_lineage in lf.named_lineage]))
        ncbi.annotate_tree(t, attr_name='taxid')
            
        #print t.write(features=[])
        #print t.write()
        yield t
Esempio n. 3
0
def main(argv):
    
    parser = argparse.ArgumentParser(description=__DESCRIPTION__, 
                            formatter_class=argparse.RawDescriptionHelpFormatter)


    input_args = parser.add_argument_group("INPUT OPTIONS")
    input_args.add_argument("source_trees", metavar='source_trees', type=str, nargs="*",
                   help='a list of source tree files')
    
    input_args.add_argument("--source_file", dest="source_file", 
                        type=str, 
                        help="""path to a file containing many source trees, one per line""")

    input_args.add_argument("-r", dest="reftree", 
                        type=str, required=True,
                        help="""Reference tree""")

    input_args.add_argument("--ref_tree_attr", dest="ref_tree_attr", 
                            type=str, default="name",
                            help=("attribute in ref tree used as leaf name"))
    
    input_args.add_argument("--src_tree_attr", dest="src_tree_attr", 
                            type=str, default="name",
                            help=("attribute in source tree used as leaf name"))

    input_args.add_argument("--min_support_ref",
                            type=float, default=0.0,
                        help=("min support for branches to be considered from the ref tree"))
    input_args.add_argument("--min_support_src",
                        type=float, default=0.0,
                        help=("min support for branches to be considered from the source tree"))

    
    output_args = parser.add_argument_group("OUTPUT OPTIONS")
    
    output_args.add_argument("-o", dest="output", 
                            type=str,
                            help="""Path to the tab delimited report file""")

    
    opt_args = parser.add_argument_group("DISTANCE OPTIONS")
    

    opt_args.add_argument("--outgroup", dest="outgroup", 
                        nargs = "+",
                        help="""outgroup used to root reference and source trees before distance computation""")
  
    opt_args.add_argument("--expand_polytomies", dest="polytomies", 
                        action = "store_true",
                        help="""expand politomies if necessary""")
  
    opt_args.add_argument("--unrooted", dest="unrooted", 
                        action = "store_true",
                        help="""compare trees as unrooted""")

    opt_args.add_argument("--min_support", dest="min_support", 
                        type=float, default=0.0,
                        help=("min support value for branches to be counted in the distance computation (RF, treeko and refTree/targeGene compatibility)"))

    opt_args = parser.add_argument_group("PHYLOGENETICS OPTIONS")
    
    opt_args.add_argument("--extract_species",
                        action = "store_true",
                        help="When used, leaf names in the reference and source trees are assumed to represent species."
                          " If target trees are gene-trees whose species information is encoded as a part of the leaf sequence name,"
                          " it can be automatically extracted by providing a Perl regular expression that extract a "
                          " valid species code (see --sp_regexp). Such information will be also used to detect duplication"
                          " events. ")

    opt_args.add_argument("--sp_regexp", 
                          type=str,
                         help=("Specifies a Perl regular expression to automatically extract species names"
                          " from the name string in source trees. If not used, leaf names are assumed to represent species names."
                          " Example: use this expression '[^_]+_(.+)' to extract HUMAN from the string 'P53_HUMAN'."))
        
    opt_args.add_argument("--collateral", 
                        action='store_true', 
                        help=(""))

    
    args = parser.parse_args(argv)
    print __DESCRIPTION__
    reftree = args.reftree
    if args.source_file and args.source_trees:
        print >>sys.stderr, 'The use of targets_file and targets at the same time is not supported.'
        sys.exit(1)
        
    if args.source_file:
        source_trees = tree_iterator(args.source_file)
    else:
        source_trees = args.source_trees
        
    ref_tree = Tree(reftree)

    if args.ref_tree_attr:
        for lf in ref_tree.iter_leaves():
            lf._origname = lf.name
            if args.ref_tree_attr not in lf.features:
                print lf
            lf.name = getattr(lf, args.ref_tree_attr)
    
    if args.outgroup:
        if len(args.outgroup) > 1:
            out = ref_tree.get_common_ancestor(args.outgroup)
        else:
            out = ref_tree.search_nodes(name=args.outgroup[0])[0]
        ref_tree.set_outgroup(out)
                     

    HEADER = ("source tree", 'ref tree', 'common\ntips', 'normRF', 'RF', 'maxRF', "%reftree", "%genetree", "subtrees", "treeko\ndist")
    if args.output:
        OUT = open(args.output, "w")
        print >>OUT, '# ' + ctime()
        print >>OUT, '# ' + ' '.join(sys.argv) 
        print >>OUT, '#'+'\t'.join(HEADER)
    else:
        print '# ' + ctime()
        print '# ' + ' '.join(sys.argv) 
        COL_WIDTHS = [20, 20] + [9] * 10
        print_table([HEADER], fix_col_width=COL_WIDTHS, wrap_style='wrap')
        
                
    prev_tree = None
    ref_fname = os.path.basename(args.reftree)
    for counter, tfile in enumerate(source_trees):
        if args.source_file:
            seedid, tfile = tfile
        else:
            seedid = None
           
        if args.extract_species:

            if args.sp_regexp:
                SPMATCHER = re.compile(args.sp_regexp)
                get_sp_name = lambda x: re.search(SPMATCHER, x).groups()[0]
            else:
                get_sp_name = lambda x: x
                
            tt = PhyloTree(tfile, sp_naming_function = get_sp_name)
        else:
            tt = Tree(tfile)

        if args.src_tree_attr:
            for lf in tt.iter_leaves():
                lf._origname = lf.name
                lf.name = getattr(lf, args.src_tree_attr)
            
        if args.outgroup:
            if len(args.outgroup) > 1:
                out = tt.get_common_ancestor(args.outgroup)
            else:
                out = tt.search_nodes(name=args.outgroup[0])[0]
            tt.set_outgroup(out)
        
        if args.source_trees:
            fname = os.path.basename(tfile)
        else:
            fname = '%05d' %counter                          


            
        r = tt.compare(ref_tree, 
                       ref_tree_attr=args.ref_tree_attr,
                       source_tree_attr=args.src_tree_attr,
                       min_support_ref=args.min_support_ref,
                       min_support_source = args.min_support_src,
                       unrooted=args.unrooted,
                       has_duplications=args.extract_species)

                          

        print_table([map(istr, [fname[-30:], ref_fname[-30:], r['effective_tree_size'], r['norm_rf'],
                               r['rf'], r['max_rf'], r["source_edges_in_ref"],
                               r["ref_edges_in_source"], r['source_subtrees'], r['treeko_dist']])],
                    fix_col_width = COL_WIDTHS, wrap_style='cut')
                          

    if args.output:
        OUT.close()
Esempio n. 4
0
    header = ("Tree".center(50), "Total subtrees", "Broken subtrees",
              "Broken NCBI clades", "RF (avg)", "RF (med)", "RF (std)",
              "RF (max possible)")
    print >> OUT, "#" + ' '.join([h.center(15) for h in header])
    for tfile in target_trees:
        print tfile
        t = PhyloTree(tfile, sp_naming_function=None)
        if args.outgroup:
            if len(args.outgroup) == 1:
                out = t & args.outgroup[0]
            else:
                out = t.get_common_ancestor(args.outgroup)
                if set(out.get_leaf_names()) ^ set(args.outgroup):
                    raise ValueError("Outgroup is not monophyletic")

            t.set_outgroup(out)
        t.ladderize()

        if prev_tree:
            tree_compare(t, prev_tree)
        prev_tree = t

        if args.ref_tree:
            print "Reading ref tree from", args.ref_tree
            reft = Tree(args.ref_tree, format=1)

        else:
            reft = None

        if args.tax_info:
            tax2name, tax2track = annotate_tree_with_taxa(
Esempio n. 5
0
def main(argv):

    parser = argparse.ArgumentParser(
        description=__DESCRIPTION__,
        formatter_class=argparse.RawDescriptionHelpFormatter)

    input_args = parser.add_argument_group("INPUT OPTIONS")
    input_args.add_argument("source_trees",
                            metavar='source_trees',
                            type=str,
                            nargs="*",
                            help='a list of source tree files')

    input_args.add_argument(
        "--source_file",
        dest="source_file",
        type=str,
        help="""path to a file containing many source trees, one per line""")

    input_args.add_argument("-r",
                            dest="reftree",
                            type=str,
                            required=True,
                            help="""Reference tree""")

    input_args.add_argument("--ref_tree_attr",
                            dest="ref_tree_attr",
                            type=str,
                            default="name",
                            help=("attribute in ref tree used as leaf name"))

    input_args.add_argument(
        "--src_tree_attr",
        dest="src_tree_attr",
        type=str,
        default="name",
        help=("attribute in source tree used as leaf name"))

    input_args.add_argument(
        "--min_support_ref",
        type=float,
        default=0.0,
        help=("min support for branches to be considered from the ref tree"))
    input_args.add_argument(
        "--min_support_src",
        type=float,
        default=0.0,
        help=(
            "min support for branches to be considered from the source tree"))

    output_args = parser.add_argument_group("OUTPUT OPTIONS")

    output_args.add_argument("-o",
                             dest="output",
                             type=str,
                             help="""Path to the tab delimited report file""")

    opt_args = parser.add_argument_group("DISTANCE OPTIONS")

    opt_args.add_argument(
        "--outgroup",
        dest="outgroup",
        nargs="+",
        help=
        """outgroup used to root reference and source trees before distance computation"""
    )

    opt_args.add_argument("--expand_polytomies",
                          dest="polytomies",
                          action="store_true",
                          help="""expand politomies if necessary""")

    opt_args.add_argument("--unrooted",
                          dest="unrooted",
                          action="store_true",
                          help="""compare trees as unrooted""")

    opt_args.add_argument(
        "--min_support",
        dest="min_support",
        type=float,
        default=0.0,
        help=
        ("min support value for branches to be counted in the distance computation (RF, treeko and refTree/targeGene compatibility)"
         ))

    opt_args = parser.add_argument_group("PHYLOGENETICS OPTIONS")

    opt_args.add_argument(
        "--extract_species",
        action="store_true",
        help=
        "When used, leaf names in the reference and source trees are assumed to represent species."
        " If target trees are gene-trees whose species information is encoded as a part of the leaf sequence name,"
        " it can be automatically extracted by providing a Perl regular expression that extract a "
        " valid species code (see --sp_regexp). Such information will be also used to detect duplication"
        " events. ")

    opt_args.add_argument(
        "--sp_regexp",
        type=str,
        help=
        ("Specifies a Perl regular expression to automatically extract species names"
         " from the name string in source trees. If not used, leaf names are assumed to represent species names."
         " Example: use this expression '[^_]+_(.+)' to extract HUMAN from the string 'P53_HUMAN'."
         ))

    opt_args.add_argument("--collateral", action='store_true', help=(""))

    args = parser.parse_args(argv)
    print __DESCRIPTION__
    reftree = args.reftree
    if args.source_file and args.source_trees:
        print >> sys.stderr, 'The use of targets_file and targets at the same time is not supported.'
        sys.exit(1)

    if args.source_file:
        source_trees = tree_iterator(args.source_file)
    else:
        source_trees = args.source_trees

    ref_tree = Tree(reftree)

    if args.ref_tree_attr:
        for lf in ref_tree.iter_leaves():
            lf._origname = lf.name
            if args.ref_tree_attr not in lf.features:
                print lf
            lf.name = getattr(lf, args.ref_tree_attr)

    if args.outgroup:
        if len(args.outgroup) > 1:
            out = ref_tree.get_common_ancestor(args.outgroup)
        else:
            out = ref_tree.search_nodes(name=args.outgroup[0])[0]
        ref_tree.set_outgroup(out)

    HEADER = ("source tree", 'ref tree', 'common\ntips', 'normRF', 'RF',
              'maxRF', "%reftree", "%genetree", "subtrees", "treeko\ndist")
    if args.output:
        OUT = open(args.output, "w")
        print >> OUT, '# ' + ctime()
        print >> OUT, '# ' + ' '.join(sys.argv)
        print >> OUT, '#' + '\t'.join(HEADER)
    else:
        print '# ' + ctime()
        print '# ' + ' '.join(sys.argv)
        COL_WIDTHS = [20, 20] + [9] * 10
        print_table([HEADER], fix_col_width=COL_WIDTHS, wrap_style='wrap')

    prev_tree = None
    ref_fname = os.path.basename(args.reftree)
    for counter, tfile in enumerate(source_trees):
        if args.source_file:
            seedid, tfile = tfile
        else:
            seedid = None

        if args.extract_species:

            if args.sp_regexp:
                SPMATCHER = re.compile(args.sp_regexp)
                get_sp_name = lambda x: re.search(SPMATCHER, x).groups()[0]
            else:
                get_sp_name = lambda x: x

            tt = PhyloTree(tfile, sp_naming_function=get_sp_name)
        else:
            tt = Tree(tfile)

        if args.src_tree_attr:
            for lf in tt.iter_leaves():
                lf._origname = lf.name
                lf.name = getattr(lf, args.src_tree_attr)

        if args.outgroup:
            if len(args.outgroup) > 1:
                out = tt.get_common_ancestor(args.outgroup)
            else:
                out = tt.search_nodes(name=args.outgroup[0])[0]
            tt.set_outgroup(out)

        if args.source_trees:
            fname = os.path.basename(tfile)
        else:
            fname = '%05d' % counter

        r = tt.compare(ref_tree,
                       ref_tree_attr=args.ref_tree_attr,
                       source_tree_attr=args.src_tree_attr,
                       min_support_ref=args.min_support_ref,
                       min_support_source=args.min_support_src,
                       unrooted=args.unrooted,
                       has_duplications=args.extract_species)

        print_table([
            map(istr, [
                fname[-30:], ref_fname[-30:], r['effective_tree_size'],
                r['norm_rf'], r['rf'], r['max_rf'], r["source_edges_in_ref"],
                r["ref_edges_in_source"], r['source_subtrees'],
                r['treeko_dist']
            ])
        ],
                    fix_col_width=COL_WIDTHS,
                    wrap_style='cut')

    if args.output:
        OUT.close()
    #header = "filename", "refname", "# subtrees", "# dups", "broken subtrees", "ncbi_mistakes", "RF", "avg RF", "RF std", "max RF", "")
    #print '\t'.join(header)
    header = ("Tree".center(50), "Total subtrees", "Broken subtrees", "Broken NCBI clades", "RF (avg)", "RF (med)", "RF (std)", "RF (max possible)")
    print >>OUT, "#"+' '.join([h.center(15) for h in header])
    for tfile in target_trees:
        print tfile
        t = PhyloTree(tfile, sp_naming_function=None)
        if args.outgroup:
            if len(args.outgroup) == 1:
                out = t & args.outgroup[0]
            else:
                out = t.get_common_ancestor(args.outgroup)
                if set(out.get_leaf_names()) ^ set(args.outgroup):
                    raise ValueError("Outgroup is not monophyletic")
                
            t.set_outgroup(out)
        t.ladderize()

        if prev_tree:
            tree_compare(t, prev_tree)
        prev_tree = t
        
        if args.ref_tree:
            print "Reading ref tree from", args.ref_tree
            reft = Tree(args.ref_tree, format=1)

        else:
            reft = None
        
        if args.tax_info:
            tax2name, tax2track = annotate_tree_with_taxa(t, args.tax_info, tax2name, tax2track)
Esempio n. 7
0
def main(argv):
    parser = argparse.ArgumentParser(description=__DESCRIPTION__, 
                                     formatter_class=argparse.RawDescriptionHelpFormatter)
    # name or flags - Either a name or a list of option strings, e.g. foo or -f, --foo.
    # action - The basic type of action to be taken when this argument is encountered at the command line. (store, store_const, store_true, store_false, append, append_const, version)
    # nargs - The number of command-line arguments that should be consumed. (N, ? (one or default), * (all 1 or more), + (more than 1) )
    # const - A constant value required by some action and nargs selections. 
    # default - The value produced if the argument is absent from the command line.
    # type - The type to which the command-line argument should be converted.
    # choices - A container of the allowable values for the argument.
    # required - Whether or not the command-line option may be omitted (optionals only).
    # help - A brief description of what the argument does.
    # metavar - A name for the argument in usage messages.
    # dest - The name of the attribute to be added to the object returned by parse_args().
    
    parser.add_argument("--show", dest="show_tree",
                        action="store_true", 
                        help="""Display tree after the analysis.""")
    
    parser.add_argument("--render", dest="render",
                        action="store_true", 
                        help="""Render tree.""")

    parser.add_argument("--dump", dest="dump",
                        action="store_true", 
                        help="""Dump analysis""")

    parser.add_argument("--explore", dest="explore",
                        type=str,
                        help="""Reads a previously analyzed tree and visualize it""")
    
    input_args = parser.add_mutually_exclusive_group()
    input_args.required=True
    input_args.add_argument("-t", "--tree", dest="target_tree",  nargs="+",
                        type=str,
                        help="""Tree file in newick format""")

    input_args.add_argument("-tf", dest="tree_list_file",
                        type=str, 
                        help="File with the list of tree files")
    
    parser.add_argument("--tax", dest="tax_info", type=str,
                        help="If the taxid attribute is not set in the"
                        " newick file for all leaf nodes, a tab file file"
                        " with the translation of name and taxid can be"
                        " provided with this option.")

    parser.add_argument("--sp_delimiter", dest="sp_delimiter", type=str,
                        help="If taxid is part of the leaf name, delimiter used to split the string")

    parser.add_argument("--sp_field", dest="sp_field", type=int, default=0,
                        help="field position for taxid after splitting leaf names")
    
    parser.add_argument("--ref", dest="ref_tree", type=str,
                        help="Uses ref tree to compute robinson foulds"
                        " distances of the different subtrees")

    parser.add_argument("--rf-only", dest="rf_only",
                        action = "store_true",
                        help="Skip ncbi consensus analysis")

    parser.add_argument("--outgroup", dest="outgroup",
                        type=str, nargs="+",
                        help="A list of node names defining the trees outgroup")
    
    parser.add_argument("--is_sptree", dest="is_sptree",
                        action = "store_true",
                        help="Assumes no duplication nodes in the tree")
    
    parser.add_argument("-o", dest="output", type=str,
                        help="Writes result into a file")

    parser.add_argument("--tax2name", dest="tax2name", type=str,
                        help="")
    
    parser.add_argument("--tax2track", dest="tax2track", type=str,
                        help="")
    
    parser.add_argument("--dump_tax_info", dest="dump_tax_info", action="store_true",
                        help="")
    
    args = parser.parse_args(argv)

    if args.sp_delimiter:
        GET_TAXID = lambda x: x.split(args.sp_delimiter)[args.sp_field]
    else:
        GET_TAXID = None
    
    reftree_name = os.path.basename(args.ref_tree) if args.ref_tree else ""
    if args.explore:
        print >>sys.stderr, "Reading tree from file:", args.explore
        t = cPickle.load(open(args.explore))
        ts = TreeStyle()
        ts.force_topology = True
        ts.show_leaf_name = False
        ts.layout_fn = ncbi_layout 
        ts.mode = "r"
        t.show(tree_style=ts)
        print >>sys.stderr, "dumping color config"
        cPickle.dump(name2color, open("ncbi_colors.pkl", "w"))
        sys.exit()
    
    if args.output:
        OUT = open(args.output, "w")
    else:
        OUT = sys.stdout

    print >>sys.stderr, "Dumping results into", OUT
    target_trees = []
    if args.tree_list_file:
        target_trees = [line.strip() for line in open(args.tree_list_file)]
    if args.target_tree:
        target_trees += args.target_tree
    prev_tree = None
    if args.tax2name:
        tax2name = cPickle.load(open(args.tax2name))
    else:
        tax2name = {}

    if args.tax2track:
        tax2track = cPickle.load(open(args.tax2track))
    else:
        tax2track = {}
    print len(tax2track), len(tax2name)
    header = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees", "Broken clades", "Clade sizes", "RF (avg)", "RF (med)", "RF (std)", "RF (max)", "Shared tips")
    print >>OUT, '|'.join([h.ljust(15) for h in header])
    if args.ref_tree:
        print >>sys.stderr, "Reading ref tree from", args.ref_tree
        reft = Tree(args.ref_tree, format=1)
    else:
        reft = None

    SHOW_TREE = False
    if args.show_tree or args.render:
        SHOW_TREE = True

        
    prev_broken = set()
    ENTRIES = []
    ncbi.connect_database()
    for tfile in target_trees:
        #print tfile
        t = PhyloTree(tfile, sp_naming_function=None)
        if GET_TAXID:
            for n in t.iter_leaves():
                n.name = GET_TAXID(n.name)
        
        if args.outgroup:
            if len(args.outgroup) == 1:
                out = t & args.outgroup[0]
            else:
                out = t.get_common_ancestor(args.outgroup)
                if set(out.get_leaf_names()) ^ set(args.outgroup):
                    raise ValueError("Outgroup is not monophyletic")
                
            t.set_outgroup(out)
        t.ladderize()

        if prev_tree:
            tree_compare(t, prev_tree)
        prev_tree = t
       
        
        if args.tax_info:
            tax2name, tax2track = annotate_tree_with_taxa(t, args.tax_info, tax2name, tax2track)
            if args.dump_tax_info:
                cPickle.dump(tax2track, open("tax2track.pkl", "w"))
                cPickle.dump(tax2name, open("tax2name.pkl", "w"))
                print "Tax info written into pickle files"
        else:
            for n in t.iter_leaves():
                spcode = n.name
                n.add_features(taxid=spcode)
                n.add_features(species=spcode)
            tax2name, tax2track = annotate_tree_with_taxa(t, None, tax2name, tax2track)
            
        # Split tree into species trees
        #subtrees =  t.get_speciation_trees()
        if not args.rf_only:
            #print "Calculating tree subparts..."
            t1 = time.time()
            if not args.is_sptree:
                subtrees =  t.split_by_dups()
                #print "Subparts:", len(subtrees), time.time()-t1
            else:
                subtrees = [t]

          
            valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees(t, subtrees, show_tree=SHOW_TREE)
            
            #print valid_subtrees, broken_subtrees, ncbi_mistakes, total_rf
        else:
            subtrees = []
            valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = 0, 0, 0, 0, 0, 0
            
        ndups = 0
        nsubtrees = len(subtrees)
           
        rf = 0
        rf_max = 0
        rf_std = 0
        rf_med = 0
        common_names = 0
        max_size = 0
        if reft and len(subtrees) == 1:
            rf = t.robinson_foulds(reft, attr_t1="realname")
            rf_max = rf[1]
            rf = rf[0]
            rf_med = rf
            
        elif reft:
            #print "Calculating avg RF..."
            nsubtrees, ndups, subtrees = t.get_speciation_trees(map_features=["taxid"])
            #print len(subtrees), "Sub-Species-trees found"
            avg_rf = []
            rf_max = 0.0 # reft.robinson_foulds(reft)[1]
            sum_size = 0.0
            print nsubtrees, "subtrees", ndups, "duplications"

            for ii, subt in enumerate(subtrees):
                print "\r%d" %ii,
                sys.stdout.flush()
                try:
                    partial_rf = subt.robinson_foulds(reft, attr_t1="taxid")
                except ValueError:
                    pass
                else:
                    sptree_size = len(set([n.taxid for n in subt.iter_leaves()]))
                    sum_size += sptree_size
                    avg_rf.append((partial_rf[0]/float(partial_rf[1])) * sptree_size)
                    common_names = len(partial_rf[3])
                    max_size = max(max_size, sptree_size)
                    rf_max = max(rf_max, partial_rf[1])
                #print  partial_rf[:2]
            rf = numpy.sum(avg_rf) / float(sum_size) # Treeko dist
            rf_std = numpy.std(avg_rf)
            rf_med = numpy.median(avg_rf)

        sizes_info = "%0.1f/%0.1f +- %0.1f" %( numpy.mean(broken_sizes), numpy.median(broken_sizes), numpy.std(broken_sizes))
        iter_values = [os.path.basename(tfile), nsubtrees, ndups,
                        broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, rf, rf_med,
                       rf_std, rf_max, common_names] 
        print >>OUT, '|'.join(map(lambda x: str(x).strip().ljust(15), iter_values)) 
        fixed = sorted([n for n in prev_broken if n not in broken_clades])
        new_problems =  sorted(broken_clades - prev_broken)
        fixed_string = color(', '.join(fixed), "green") if fixed else ""
        problems_string = color(', '.join(new_problems), "red") if new_problems else ""
        OUT.write("    Fixed clades: %s\n" %fixed_string) if fixed else None
        OUT.write("    New broken:   %s\n" %problems_string) if new_problems else None
        prev_broken = broken_clades
        ENTRIES.append([os.path.basename(tfile), nsubtrees, ndups,
                        broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, fixed_string, problems_string])
        OUT.flush()
        if args.show_tree or args.render:
            ts = TreeStyle()
            ts.force_topology = True
            #ts.tree_width = 500
            ts.show_leaf_name = False
            ts.layout_fn = ncbi_layout 
            ts.mode = "r"
            t.dist = 0
            if args.show_tree:
                #if args.hide_monophyletic:
                #    tax2monophyletic = {}
                #    n2content = t.get_node2content()
                #    for node in t.traverse():
                #        term2count = defaultdict(int)
                #        for leaf in n2content[node]:
                #            if leaf.lineage:
                #                for term in leaf.lineage:
                #                    term2count[term] += 1
                #        expected_size = len(n2content)
                #        for term, count in term2count.iteritems():
                #            if count > 1
                    
                print "Showing tree..."
                t.show(tree_style=ts)
            else:
                t.render("img.svg", tree_style=ts, dpi=300)
            print "dumping color config"
            cPickle.dump(name2color, open("ncbi_colors.pkl", "w"))

        if args.dump:
            cPickle.dump(t, open("ncbi_analysis.pkl", "w"))
            
    print
    print
    HEADER = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees", "Broken clades", "Broken branches", "Clade sizes", "Fixed Groups", "New Broken Clades")
    print_table(ENTRIES, max_col_width = 50, row_line=True, header=HEADER)
            
    if args.output:
        OUT.close()
Esempio n. 8
0
def main(argv):
    parser = argparse.ArgumentParser(
        description=__DESCRIPTION__,
        formatter_class=argparse.RawDescriptionHelpFormatter)
    # name or flags - Either a name or a list of option strings, e.g. foo or -f, --foo.
    # action - The basic type of action to be taken when this argument is encountered at the command line. (store, store_const, store_true, store_false, append, append_const, version)
    # nargs - The number of command-line arguments that should be consumed. (N, ? (one or default), * (all 1 or more), + (more than 1) )
    # const - A constant value required by some action and nargs selections.
    # default - The value produced if the argument is absent from the command line.
    # type - The type to which the command-line argument should be converted.
    # choices - A container of the allowable values for the argument.
    # required - Whether or not the command-line option may be omitted (optionals only).
    # help - A brief description of what the argument does.
    # metavar - A name for the argument in usage messages.
    # dest - The name of the attribute to be added to the object returned by parse_args().

    parser.add_argument("--show",
                        dest="show_tree",
                        action="store_true",
                        help="""Display tree after the analysis.""")

    parser.add_argument("--render",
                        dest="render",
                        action="store_true",
                        help="""Render tree.""")

    parser.add_argument("--dump",
                        dest="dump",
                        action="store_true",
                        help="""Dump analysis""")

    parser.add_argument(
        "--explore",
        dest="explore",
        type=str,
        help="""Reads a previously analyzed tree and visualize it""")

    input_args = parser.add_mutually_exclusive_group()
    input_args.required = True
    input_args.add_argument("-t",
                            "--tree",
                            dest="target_tree",
                            nargs="+",
                            type=str,
                            help="""Tree file in newick format""")

    input_args.add_argument("-tf",
                            dest="tree_list_file",
                            type=str,
                            help="File with the list of tree files")

    parser.add_argument("--tax",
                        dest="tax_info",
                        type=str,
                        help="If the taxid attribute is not set in the"
                        " newick file for all leaf nodes, a tab file file"
                        " with the translation of name and taxid can be"
                        " provided with this option.")

    parser.add_argument(
        "--sp_delimiter",
        dest="sp_delimiter",
        type=str,
        help=
        "If taxid is part of the leaf name, delimiter used to split the string"
    )

    parser.add_argument(
        "--sp_field",
        dest="sp_field",
        type=int,
        default=0,
        help="field position for taxid after splitting leaf names")

    parser.add_argument("--ref",
                        dest="ref_tree",
                        type=str,
                        help="Uses ref tree to compute robinson foulds"
                        " distances of the different subtrees")

    parser.add_argument("--rf-only",
                        dest="rf_only",
                        action="store_true",
                        help="Skip ncbi consensus analysis")

    parser.add_argument(
        "--outgroup",
        dest="outgroup",
        type=str,
        nargs="+",
        help="A list of node names defining the trees outgroup")

    parser.add_argument("--is_sptree",
                        dest="is_sptree",
                        action="store_true",
                        help="Assumes no duplication nodes in the tree")

    parser.add_argument("-o",
                        dest="output",
                        type=str,
                        help="Writes result into a file")

    parser.add_argument("--tax2name", dest="tax2name", type=str, help="")

    parser.add_argument("--tax2track", dest="tax2track", type=str, help="")

    parser.add_argument("--dump_tax_info",
                        dest="dump_tax_info",
                        action="store_true",
                        help="")

    args = parser.parse_args(argv)

    if args.sp_delimiter:
        GET_TAXID = lambda x: x.split(args.sp_delimiter)[args.sp_field]
    else:
        GET_TAXID = None

    reftree_name = os.path.basename(args.ref_tree) if args.ref_tree else ""
    if args.explore:
        print >> sys.stderr, "Reading tree from file:", args.explore
        t = cPickle.load(open(args.explore))
        ts = TreeStyle()
        ts.force_topology = True
        ts.show_leaf_name = False
        ts.layout_fn = ncbi_layout
        ts.mode = "r"
        t.show(tree_style=ts)
        print >> sys.stderr, "dumping color config"
        cPickle.dump(name2color, open("ncbi_colors.pkl", "w"))
        sys.exit()

    if args.output:
        OUT = open(args.output, "w")
    else:
        OUT = sys.stdout

    print >> sys.stderr, "Dumping results into", OUT
    target_trees = []
    if args.tree_list_file:
        target_trees = [line.strip() for line in open(args.tree_list_file)]
    if args.target_tree:
        target_trees += args.target_tree
    prev_tree = None
    if args.tax2name:
        tax2name = cPickle.load(open(args.tax2name))
    else:
        tax2name = {}

    if args.tax2track:
        tax2track = cPickle.load(open(args.tax2track))
    else:
        tax2track = {}
    print len(tax2track), len(tax2name)
    header = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees",
              "Broken clades", "Clade sizes", "RF (avg)", "RF (med)",
              "RF (std)", "RF (max)", "Shared tips")
    print >> OUT, '|'.join([h.ljust(15) for h in header])
    if args.ref_tree:
        print >> sys.stderr, "Reading ref tree from", args.ref_tree
        reft = Tree(args.ref_tree, format=1)
    else:
        reft = None

    SHOW_TREE = False
    if args.show_tree or args.render:
        SHOW_TREE = True

    prev_broken = set()
    ENTRIES = []
    ncbi.connect_database()
    for tfile in target_trees:
        #print tfile
        t = PhyloTree(tfile, sp_naming_function=None)
        if GET_TAXID:
            for n in t.iter_leaves():
                n.name = GET_TAXID(n.name)

        if args.outgroup:
            if len(args.outgroup) == 1:
                out = t & args.outgroup[0]
            else:
                out = t.get_common_ancestor(args.outgroup)
                if set(out.get_leaf_names()) ^ set(args.outgroup):
                    raise ValueError("Outgroup is not monophyletic")

            t.set_outgroup(out)
        t.ladderize()

        if prev_tree:
            tree_compare(t, prev_tree)
        prev_tree = t

        if args.tax_info:
            tax2name, tax2track = annotate_tree_with_taxa(
                t, args.tax_info, tax2name, tax2track)
            if args.dump_tax_info:
                cPickle.dump(tax2track, open("tax2track.pkl", "w"))
                cPickle.dump(tax2name, open("tax2name.pkl", "w"))
                print "Tax info written into pickle files"
        else:
            for n in t.iter_leaves():
                spcode = n.name
                n.add_features(taxid=spcode)
                n.add_features(species=spcode)
            tax2name, tax2track = annotate_tree_with_taxa(
                t, None, tax2name, tax2track)

        # Split tree into species trees
        #subtrees =  t.get_speciation_trees()
        if not args.rf_only:
            #print "Calculating tree subparts..."
            t1 = time.time()
            if not args.is_sptree:
                subtrees = t.split_by_dups()
                #print "Subparts:", len(subtrees), time.time()-t1
            else:
                subtrees = [t]

            valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees(
                t, subtrees, show_tree=SHOW_TREE)

            #print valid_subtrees, broken_subtrees, ncbi_mistakes, total_rf
        else:
            subtrees = []
            valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = 0, 0, 0, 0, 0, 0

        ndups = 0
        nsubtrees = len(subtrees)

        rf = 0
        rf_max = 0
        rf_std = 0
        rf_med = 0
        common_names = 0
        max_size = 0
        if reft and len(subtrees) == 1:
            rf = t.robinson_foulds(reft, attr_t1="realname")
            rf_max = rf[1]
            rf = rf[0]
            rf_med = rf

        elif reft:
            #print "Calculating avg RF..."
            nsubtrees, ndups, subtrees = t.get_speciation_trees(
                map_features=["taxid"])
            #print len(subtrees), "Sub-Species-trees found"
            avg_rf = []
            rf_max = 0.0  # reft.robinson_foulds(reft)[1]
            sum_size = 0.0
            print nsubtrees, "subtrees", ndups, "duplications"

            for ii, subt in enumerate(subtrees):
                print "\r%d" % ii,
                sys.stdout.flush()
                try:
                    partial_rf = subt.robinson_foulds(reft, attr_t1="taxid")
                except ValueError:
                    pass
                else:
                    sptree_size = len(
                        set([n.taxid for n in subt.iter_leaves()]))
                    sum_size += sptree_size
                    avg_rf.append(
                        (partial_rf[0] / float(partial_rf[1])) * sptree_size)
                    common_names = len(partial_rf[3])
                    max_size = max(max_size, sptree_size)
                    rf_max = max(rf_max, partial_rf[1])
                #print  partial_rf[:2]
            rf = numpy.sum(avg_rf) / float(sum_size)  # Treeko dist
            rf_std = numpy.std(avg_rf)
            rf_med = numpy.median(avg_rf)

        sizes_info = "%0.1f/%0.1f +- %0.1f" % (numpy.mean(broken_sizes),
                                               numpy.median(broken_sizes),
                                               numpy.std(broken_sizes))
        iter_values = [
            os.path.basename(tfile), nsubtrees, ndups, broken_subtrees,
            ncbi_mistakes, broken_branches, sizes_info, rf, rf_med, rf_std,
            rf_max, common_names
        ]
        print >> OUT, '|'.join(
            map(lambda x: str(x).strip().ljust(15), iter_values))
        fixed = sorted([n for n in prev_broken if n not in broken_clades])
        new_problems = sorted(broken_clades - prev_broken)
        fixed_string = color(', '.join(fixed), "green") if fixed else ""
        problems_string = color(', '.join(new_problems),
                                "red") if new_problems else ""
        OUT.write("    Fixed clades: %s\n" % fixed_string) if fixed else None
        OUT.write("    New broken:   %s\n" %
                  problems_string) if new_problems else None
        prev_broken = broken_clades
        ENTRIES.append([
            os.path.basename(tfile), nsubtrees, ndups, broken_subtrees,
            ncbi_mistakes, broken_branches, sizes_info, fixed_string,
            problems_string
        ])
        OUT.flush()
        if args.show_tree or args.render:
            ts = TreeStyle()
            ts.force_topology = True
            #ts.tree_width = 500
            ts.show_leaf_name = False
            ts.layout_fn = ncbi_layout
            ts.mode = "r"
            t.dist = 0
            if args.show_tree:
                #if args.hide_monophyletic:
                #    tax2monophyletic = {}
                #    n2content = t.get_node2content()
                #    for node in t.traverse():
                #        term2count = defaultdict(int)
                #        for leaf in n2content[node]:
                #            if leaf.lineage:
                #                for term in leaf.lineage:
                #                    term2count[term] += 1
                #        expected_size = len(n2content)
                #        for term, count in term2count.iteritems():
                #            if count > 1

                print "Showing tree..."
                t.show(tree_style=ts)
            else:
                t.render("img.svg", tree_style=ts, dpi=300)
            print "dumping color config"
            cPickle.dump(name2color, open("ncbi_colors.pkl", "w"))

        if args.dump:
            cPickle.dump(t, open("ncbi_analysis.pkl", "w"))

    print
    print
    HEADER = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees",
              "Broken clades", "Broken branches", "Clade sizes",
              "Fixed Groups", "New Broken Clades")
    print_table(ENTRIES, max_col_width=50, row_line=True, header=HEADER)

    if args.output:
        OUT.close()