Esempio n. 1
0
def test_scaling_separate_test(dataset_name, scaler):
    """Test that scaling works."""
    scaler = scaler()
    dataset = get_dataset_obj_by_name(dataset_name)()
    datatuple = dataset.load()

    # Speed up the tests by making some data smaller
    if dataset_name == "health":
        datatuple, _ = train_test_split(datatuple, train_percentage=0.05)

    train, test = train_test_split(datatuple)

    train_scaled, scaler2 = scale_continuous(dataset, train, scaler)
    test_scaled, _ = scale_continuous(dataset, test, scaler2, fit=False)

    if dataset_name == "crime" and str(scaler) == "MinMaxScaler()":
        # Crime dataset is minmax scaled by the data providers.
        # So can't confirm that train contains the full range
        pass
    else:
        with pytest.raises(AssertionError):
            pandas.testing.assert_frame_equal(train.x, train_scaled.x, check_dtype=False)  # type: ignore[call-arg]
        with pytest.raises(AssertionError):
            pandas.testing.assert_frame_equal(test.x, test_scaled.x, check_dtype=False)  # type: ignore[call-arg]

    train_post, _ = scale_continuous(dataset, train_scaled, scaler2, inverse=True)
    test_post, _ = scale_continuous(dataset, test_scaled, scaler2, inverse=True)

    pandas.testing.assert_frame_equal(train.x, train_post.x, check_dtype=False)  # type: ignore[call-arg]
    pandas.testing.assert_frame_equal(test.x, test_post.x, check_dtype=False)  # type: ignore[call-arg]
Esempio n. 2
0
    def _get_splits(self) -> TrainValTestSplit[DataTupleDataset]:
        self._datatuple = self.em_dataset.load(ordered=True)

        data_len = int(self._datatuple.x.shape[0])
        num_train_val, num_test = self._get_split_sizes(
            data_len, test_prop=self.test_prop)
        train_val, test_data = em.train_test_split(
            data=self._datatuple,
            train_percentage=(1 - (num_test / data_len)),
            random_seed=self.seed,
        )
        _, num_val = self._get_split_sizes(num_train_val,
                                           test_prop=self.val_prop)
        train_data, val_data = em.train_test_split(
            data=train_val,
            train_percentage=(1 - (num_val / num_train_val)),
            random_seed=self.seed,
        )

        self._train_datatuple, self.scaler = em.scale_continuous(
            self.em_dataset,
            datatuple=train_data,
            scaler=self.scaler  # type: ignore
        )
        self._val_datatuple, _ = em.scale_continuous(self.em_dataset,
                                                     datatuple=val_data,
                                                     scaler=self.scaler,
                                                     fit=False)
        self._test_datatuple, _ = em.scale_continuous(self.em_dataset,
                                                      datatuple=test_data,
                                                      scaler=self.scaler,
                                                      fit=False)

        train_data = DataTupleDataset(
            dataset=self._train_datatuple,
            disc_features=self.em_dataset.discrete_features,
            cont_features=self.em_dataset.continuous_features,
        )

        val_data = DataTupleDataset(
            dataset=self._val_datatuple,
            disc_features=self.em_dataset.discrete_features,
            cont_features=self.em_dataset.continuous_features,
        )

        test_data = DataTupleDataset(
            dataset=self._test_datatuple,
            disc_features=self.em_dataset.discrete_features,
            cont_features=self.em_dataset.continuous_features,
        )
        return TrainValTestSplit(train=train_data,
                                 val=val_data,
                                 test=test_data)
Esempio n. 3
0
def test_random_seed():
    """Test random seed."""
    data: DataTuple = em.load_data(em.toy())
    train_test_0: Tuple[DataTuple, DataTuple] = em.train_test_split(data)
    train_0, test_0 = train_test_0
    assert train_0 is not None
    assert test_0 is not None
    assert train_0.x.shape[0] > test_0.x.shape[0]
    assert train_0.x["a1"].values[0] == 0.2365572108691669
    assert train_0.x["a2"].values[0] == approx(0.008603090240657633, abs=1e-6)

    assert train_0.x.shape[0] == train_0.s.shape[0]
    assert train_0.s.shape[0] == train_0.y.shape[0]

    train_test_1: Tuple[DataTuple,
                        DataTuple] = em.train_test_split(data, random_seed=1)
    train_1, test_1 = train_test_1
    assert train_1 is not None
    assert test_1 is not None
    assert train_1.x.shape[0] > test_1.x.shape[0]
    assert train_1.x["a1"].values[0] == 1.3736566330173798
    assert train_1.x["a2"].values[0] == approx(0.21742296144957174, abs=1e-6)

    assert train_1.x.shape[0] == train_1.s.shape[0]
    assert train_1.s.shape[0] == train_1.y.shape[0]

    train_test_2: Tuple[DataTuple,
                        DataTuple] = em.train_test_split(data, random_seed=2)
    train_2, test_2 = train_test_2
    assert train_2 is not None
    assert test_2 is not None
    assert train_2.x.shape[0] > test_2.x.shape[0]
    assert train_2.x["a1"].values[0] == 1.2255705960148289
    assert train_2.x["a2"].values[0] == -1.208089015454192

    assert train_2.x.shape[0] == train_2.s.shape[0]
    assert train_2.s.shape[0] == train_2.y.shape[0]

    train_test_3: Tuple[DataTuple,
                        DataTuple] = em.train_test_split(data, random_seed=3)
    train_3, test_3 = train_test_3
    assert train_3 is not None
    assert test_3 is not None
    assert train_3.x.shape[0] > test_3.x.shape[0]
    assert train_3.x["a1"].values[0] == approx(0.21165963748018515, abs=1e-6)
    assert train_3.x["a2"].values[0] == -2.425137404779957

    assert train_3.x.shape[0] == train_3.s.shape[0]
    assert train_3.s.shape[0] == train_3.y.shape[0]
Esempio n. 4
0
def test_label_plot():
    """Test label plot."""
    data: DataTuple = load_data(adult())
    train_test: Tuple[DataTuple, DataTuple] = train_test_split(data)
    train, _ = train_test

    save_label_plot(train, "./plots/labels.png")
Esempio n. 5
0
def test_calders():
    """Test calders."""
    data = DataTuple(
        x=pd.DataFrame(np.linspace(0, 1, 100), columns=["x"]),
        s=pd.DataFrame([1] * 75 + [0] * 25, columns=["s"]),
        y=pd.DataFrame([1] * 50 + [0] * 25 + [1] * 10 + [0] * 15,
                       columns=["y"]),
        name="TestData",
    )
    data, _ = em.train_test_split(data, train_percentage=1.0)
    assert len(em.query_dt(data, "s == 0 & y == 0")) == 15
    assert len(em.query_dt(data, "s == 0 & y == 1")) == 10
    assert len(em.query_dt(data, "s == 1 & y == 0")) == 25
    assert len(em.query_dt(data, "s == 1 & y == 1")) == 50
    assert em.query_dt(data,
                       "s == 1 & y == 0").x.min().min() == approx(0.50,
                                                                  abs=0.01)

    calders: PreAlgorithm = Calders(preferable_class=1, disadvantaged_group=0)
    new_train, new_test = calders.run(data, data.remove_y())

    pd.testing.assert_frame_equal(new_test.x, data.x)
    pd.testing.assert_frame_equal(new_test.s, data.s)

    assert len(em.query_dt(new_train, "s == 0 & y == 0")) == 10
    assert len(em.query_dt(new_train, "s == 0 & y == 1")) == 15
    assert len(em.query_dt(new_train, "s == 1 & y == 0")) == 30
    assert len(em.query_dt(new_train, "s == 1 & y == 1")) == 45

    assert len(data) == len(new_train)
    assert em.query_dt(new_train, "s == 1 & y == 1").x.min().min() == 0
    assert em.query_dt(new_train,
                       "s == 1 & y == 0").x.min().min() == approx(0.45,
                                                                  abs=0.01)
Esempio n. 6
0
def test_metric_per_sens_attr(dataset: Dataset, classifier: InAlgorithm,
                              metric: Metric, expected_values: Dict[str,
                                                                    float]):
    """Test accuracy per sens attr."""
    data: DataTuple = load_data(dataset)
    train_test: Tuple[DataTuple, DataTuple] = train_test_split(data)
    train, test = train_test
    model: InAlgorithm = classifier
    predictions: Prediction = model.run(train, test)
    acc_per_sens = metric_per_sensitive_attribute(predictions, test, metric)
    try:
        for key, value in acc_per_sens.items():
            assert value == approx(expected_values[key], abs=0.001)
    except AssertionError:
        print({key: round(value, 3) for key, value in acc_per_sens.items()})
        raise AssertionError

    acc_per_sens = metric_per_sensitive_attribute(predictions,
                                                  test,
                                                  metric,
                                                  use_sens_name=False)
    try:
        for key, value in expected_values.items():
            # Check that the sensitive attribute name is now just 'S'.
            assert acc_per_sens[f"S_{''.join(key.split('_')[1:])}"] == approx(
                value, abs=0.001)
    except AssertionError:
        print({key: round(value, 3) for key, value in acc_per_sens.items()})
        raise AssertionError
Esempio n. 7
0
def toy_train_val() -> TrainTestPair:
    """By making this a fixture, pytest can cache the result."""
    data: DataTuple = em.toy().load()
    train: DataTuple
    test: DataTuple
    train, test = em.train_test_split(data)
    return TrainTestPair(train, test)
    def setup(self, stage: Optional[str] = None) -> None:
        self.datatuple = self.em_dataset.load(ordered=True)

        data_len = int(self.datatuple.x.shape[0])
        num_train_val, num_test = self._get_splits(data_len, self.test_split)
        train_val, test = em.train_test_split(
            data=self.datatuple,
            train_percentage=(1 - (num_test / data_len)),
            random_seed=self.seed,
        )
        num_train, num_val = self._get_splits(num_train_val, self.val_split)
        train, val = em.train_test_split(
            data=train_val,
            train_percentage=(1 - (num_val / num_train_val)),
            random_seed=self.seed,
        )

        train, self.scaler = em.scale_continuous(self.em_dataset,
                                                 datatuple=train,
                                                 scaler=self.scaler)
        val, _ = em.scale_continuous(self.em_dataset,
                                     datatuple=val,
                                     scaler=self.scaler,
                                     fit=False)
        test, _ = em.scale_continuous(self.em_dataset,
                                      datatuple=test,
                                      scaler=self.scaler,
                                      fit=False)

        self._train_data = DataTupleDataset(
            train,
            disc_features=self.em_dataset.discrete_features,
            cont_features=self.em_dataset.continuous_features,
        )

        self._val_data = DataTupleDataset(
            val,
            disc_features=self.em_dataset.discrete_features,
            cont_features=self.em_dataset.continuous_features,
        )

        self._test_data = DataTupleDataset(
            test,
            disc_features=self.em_dataset.discrete_features,
            cont_features=self.em_dataset.continuous_features,
        )
Esempio n. 9
0
def test_nb_acc():
    """Test nb acc."""
    data: DataTuple = load_data(nonbinary_toy())
    train_test: Tuple[DataTuple, DataTuple] = train_test_split(data)
    train, test = train_test
    model: InAlgorithm = SVM()
    predictions: Prediction = model.run_test(train, test)
    acc_score = Accuracy().score(predictions, test)
    assert acc_score == 0.1
Esempio n. 10
0
def test_nb_tnr():
    """Test nb tnr."""
    data: DataTuple = load_data(nonbinary_toy())
    train_test: Tuple[DataTuple, DataTuple] = train_test_split(data)
    train, test = train_test
    model: InAlgorithm = SVM()
    predictions: Prediction = model.run_test(train, test)
    tnr_score = TNR(pos_class=1).score(predictions, test)
    assert tnr_score == 1.0
    tnr_score = TNR(pos_class=2).score(predictions, test)
    assert tnr_score == 1.0
    tnr_score = TNR(pos_class=3).score(predictions, test)
    assert tnr_score == 0.0
    tnr_score = TNR(pos_class=4).score(predictions, test)
    assert tnr_score == 1.0
    tnr_score = TNR(pos_class=5).score(predictions, test)
    assert tnr_score == 1.0

    with pytest.raises(LabelOutOfBounds):
        _ = TNR(pos_class=0).score(predictions, test)

    accs = em.metric_per_sensitive_attribute(predictions, test, TNR())
    assert accs == {
        "sens_0": approx(1.0, abs=0.1),
        "sens_1": approx(1.0, abs=0.1)
    }

    model = LR()
    predictions = model.run_test(train, test)

    print([(k, z) for k, z in zip(predictions.hard.values, test.y.values)
           if k != z])

    tnr_score = TNR(pos_class=1).score(predictions, test)
    assert tnr_score == 1.0
    tnr_score = TNR(pos_class=2).score(predictions, test)
    assert tnr_score == 1.0
    tnr_score = TNR(pos_class=3).score(predictions, test)
    assert tnr_score == approx(0.7, abs=0.1)
    tnr_score = TNR(pos_class=4).score(predictions, test)
    assert tnr_score == approx(0.85, abs=0.1)
    tnr_score = TNR(pos_class=5).score(predictions, test)
    assert tnr_score == 1.0

    with pytest.raises(LabelOutOfBounds):
        _ = TNR(pos_class=0).score(predictions, test)

    tnrs = em.metric_per_sensitive_attribute(predictions, test, TNR())
    assert tnrs == {
        "sens_0": approx(1.0, abs=0.1),
        "sens_1": approx(1.0, abs=0.1)
    }
Esempio n. 11
0
def test_issue_431():
    """This issue highlighted that error would be raised due to not all values existing in subsets of the data."""
    x = pd.DataFrame(np.random.randn(100), columns=["x"])
    s = pd.DataFrame(np.random.randn(100), columns=["s"])
    y = pd.DataFrame(np.random.randint(0, 5, 100), columns=["y"])
    data = DataTuple(x=x, s=s, y=y)
    train_test: Tuple[DataTuple, DataTuple] = train_test_split(data)
    train, test = train_test
    model: InAlgorithm = LR()
    predictions: Prediction = model.run(train, test)
    acc_per_sens = metric_per_sensitive_attribute(
        predictions, test, TPR(pos_class=1,
                               labels=list(range(y.nunique()[0]))))
    print(acc_per_sens)
Esempio n. 12
0
def test_train_test_split():
    """Test train test split."""
    data: DataTuple = em.load_data(em.toy())
    train_test: Tuple[DataTuple, DataTuple] = em.train_test_split(data)
    train, test = train_test
    assert train is not None
    assert test is not None
    assert train.x.shape[0] > test.x.shape[0]
    assert train.x["a1"].values[0] == 0.2365572108691669
    assert train.x["a2"].values[0] == approx(0.008603090240657633, abs=1e-6)

    assert train.x.shape[0] == train.s.shape[0]
    assert train.s.shape[0] == train.y.shape[0]

    num_samples = len(data)

    len_default = math.floor((num_samples / 100) * 80)
    assert train.s.shape[0] == len_default
    assert test.s.shape[0] == num_samples - len_default

    len_0_9 = math.floor((num_samples / 100) * 90)
    train, test = em.train_test_split(data, train_percentage=0.9)
    assert train.s.shape[0] == len_0_9
    assert test.s.shape[0] == num_samples - len_0_9

    len_0_7 = math.floor((num_samples / 100) * 70)
    train, test = em.train_test_split(data, train_percentage=0.7)
    assert train.s.shape[0] == len_0_7
    assert test.s.shape[0] == num_samples - len_0_7

    len_0_5 = math.floor((num_samples / 100) * 50)
    train, test = em.train_test_split(data, train_percentage=0.5)
    assert train.s.shape[0] == len_0_5
    assert test.s.shape[0] == num_samples - len_0_5

    len_0_3 = math.floor((num_samples / 100) * 30)
    train, test = em.train_test_split(data, train_percentage=0.3)
    assert train.s.shape[0] == len_0_3
    assert test.s.shape[0] == num_samples - len_0_3

    len_0_1 = math.floor((num_samples / 100) * 10)
    train, test = em.train_test_split(data, train_percentage=0.1)
    assert train.s.shape[0] == len_0_1
    assert test.s.shape[0] == num_samples - len_0_1

    len_0_0 = math.floor((num_samples / 100) * 0)
    train, test = em.train_test_split(data, train_percentage=0.0)
    assert train.s.shape[0] == len_0_0
    assert train.name == "Toy - Train"
    assert test.s.shape[0] == num_samples - len_0_0
    assert test.name == "Toy - Test"
Esempio n. 13
0
def test_corels(toy_train_test: TrainTestPair) -> None:
    """Test corels."""
    model: InAlgorithm = Corels()
    assert model is not None
    assert model.name == "CORELS"

    train_toy, test_toy = toy_train_test
    with pytest.raises(RuntimeError):
        model.run(train_toy, test_toy)

    data: DataTuple = load_data(compas())
    train, test = train_test_split(data)

    predictions: Prediction = model.run(train, test)
    expected_num_pos = 428
    assert predictions.hard.values[predictions.hard.values ==
                                   1].shape[0] == expected_num_pos
    num_neg = predictions.hard.values[predictions.hard.values == 0].shape[0]
    assert num_neg == len(predictions) - expected_num_pos
Esempio n. 14
0
def test_scaling(dataset_name, scaler):
    """Test that scaling works."""
    scaler = scaler()
    dataset = get_dataset_obj_by_name(dataset_name)()
    datatuple = dataset.load()

    # Speed up the tests by making some data smaller
    if dataset_name == "health":
        datatuple, _ = train_test_split(datatuple, train_percentage=0.05)

    datatuple_scaled, scaler2 = scale_continuous(dataset, datatuple, scaler)

    if dataset_name == "crime" and str(scaler) == "MinMaxScaler()":
        # Crime dataset is minmax scaled by the data providers.
        pandas.testing.assert_frame_equal(datatuple.x, datatuple_scaled.x, check_dtype=False)  # type: ignore[call-arg]
    else:
        with pytest.raises(AssertionError):
            pandas.testing.assert_frame_equal(datatuple.x, datatuple_scaled.x, check_dtype=False)  # type: ignore[call-arg]

    datatuple_post, _ = scale_continuous(dataset, datatuple_scaled, scaler2, inverse=True)

    pandas.testing.assert_frame_equal(datatuple.x, datatuple_post.x, check_dtype=False)  # type: ignore[call-arg]
Esempio n. 15
0
def test_tpr_ratio_non_binary_race():
    """Test tpr ratio non binary race."""
    data: DataTuple = load_data(em.adult("Race"))
    train_test: Tuple[DataTuple, DataTuple] = train_test_split(data)
    train, test = train_test
    model: InAlgorithm = SVM()
    predictions: Prediction = model.run_test(train, test)
    tprs = em.metric_per_sensitive_attribute(predictions, test, TPR())
    assert TPR().name == "TPR"
    test_dict = {
        "race_0": approx(0.37, abs=0.01),
        "race_1": approx(0.12, abs=0.01),
        "race_2": approx(0.14, abs=0.01),
        "race_3": approx(0.12, abs=0.01),
        "race_4": approx(0.16, abs=0.01),
    }

    for key, val in tprs.items():
        assert val == test_dict[key]

    tpr_diff = em.ratio_per_sensitive_attribute(tprs)
    test_dict = {
        "race_0/race_1": approx(0.32, abs=0.1),
        "race_0/race_2": approx(0.37, abs=0.1),
        "race_0/race_3": approx(0.33, abs=0.1),
        "race_0/race_4": approx(0.44, abs=0.1),
        "race_1/race_2": approx(0.88, abs=0.1),
        "race_1/race_3": approx(0.97, abs=0.1),
        "race_1/race_4": approx(0.72, abs=0.1),
        "race_2/race_3": approx(0.91, abs=0.1),
        "race_2/race_4": approx(0.74, abs=0.1),
        "race_3/race_4": approx(0.74, abs=0.1),
    }

    for key, val in tpr_diff.items():
        assert val == test_dict[key]