issue.setdefault("maint_notes") issue.setdefault("maint_init_date", datetime.datetime.now()) etl.transform( arcetl.features.insert_from_dicts, insert_features=issues, field_names=issues[0].keys(), ) etl.update( dataset.ADDRESS_ISSUES.path(), id_field_names=["site_address_gfid", "description"], ) # Jobs. NIGHTLY_JOB = Job("Address_Issues_Nightly", etls=[issues_update]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__") } pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
"""Run update for current license usage.""" LOG.info("Start: Collect license usage from FlexNet License Manager.") session = database.CPA_ADMIN.create_session() names = (name for name, in session.query(LicenseArcGISDesktop.internal_name)) for name in names: session.add_all( LicenseUsage(**usage) for usage in license_usage_info(name)) session.commit() session.close() LOG.info("End: Collect.") # Jobs. FIVE_MINUTE_JOB = Job("License_Usage", etls=[license_usage_update]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__") } pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
def locators_update(): """Run update for map server locators/geocoders.""" for name in LOCATOR_NAMES: locator_path = os.path.join(GEOCODE_PATH, name) package_path = os.path.join(GEOCODE_PATH, "packaged", name + ".gcpk") arcetl.workspace.build_locator(locator_path) ##TODO: Create arcetl.workspace.package_locator function, then use here. old_overwrite_output = arcpy.env.overwriteOutput arcpy.env.overwriteOutput = True arcpy.PackageLocator_management(locator_path, package_path) arcpy.env.overwriteOutput = old_overwrite_output # Jobs. WEEKLY_JOB = Job("Regional_Data_Warehouse_Weekly", etls=[datasets_update, locators_update]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__") } pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
for _dataset in DATASETS: arcetl.features.update_from_dicts( dataset_path=_dataset.path("pub"), update_features=source_rows(snapshot_db_path, _dataset.path("source")), id_field_names=_dataset.id_field_names, field_names=_dataset.field_names, delete_missing_features=False, use_edit_session=False, ) LOG.info("End: Update.") # Jobs. NIGHTLY_JOB = Job("CLMPO_GBF_Nightly", etls=[gbf_pub_update]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") # Collect pipeline objects. if args.parse_args().pipelines: pipelines = [globals()[arg] for arg in args.parse_args().pipelines] else: pipelines = [] # Execute. for pipeline in pipelines:
etl.load(dataset.ZONING_COUNTY.path("pub")) ##TODO: Auto-generate LCOGGeo.lcagadm.ZoningOverlay from overX fields & aliases. Also move to ETL_Load_A. # Jobs. BOUNDARY_DATASETS_JOB = Job( "Planning_Development_Boundary_Datasets", etls=[ # Pass 1. metro_plan_boundary_etl, nodal_development_area_etl, plan_designation_city_etl, willamette_river_greenway_etl, zoning_city_etl, # Pass 2. plan_designation_county_etl, zoning_county_etl, # Pass 3. plan_designation_etl, zoning_etl, ], ) TAXLOT_ZONING_JOB = Job("Taxlot_Zoning_Dataset", etls=[taxlot_zoning_etl]) # Execution. def main():
] transform.update_attributes_by_values(etl, value_kwargs) # Build values: Concatenations. etl.transform( arcetl.attributes.update_by_function, field_name="full_name", function=concatenate_arguments, field_as_first_arg=False, arg_field_names=["predir", "name", "type", "sufdir"], ) etl.load(dataset.TILLAMOOK_ROAD_CENTERLINE.path("pub")) # Jobs. NIGHTLY_JOB = Job("OEM_Tillamook_Datasets_Nightly", etls=[production_datasets_etl]) WEEKLY_JOB = Job( "OEM_Tillamook_Datasets_Weekly", etls=[ emergency_service_zone_etl, # Must addresses & roads after emergency service zones. address_point_etl, road_centerline_etl, publication_issues_message_etl, # Must run after addresses. msag_ranges_current_etl, # Must run after current MSAG ranges. msag_update, # Must run after *all* dataset ETLs. metadata_tillamook_ecd_etl,
left join Report_Ordered as sorted on report.row_rank - 1 = sorted.row_rank; """, ] kwargs = { "dataset": "Addressing.dbo.SiteAddress_evw", "report": "Addressing.dbo.Report_SiteAddress_MaintSummary", } for sql in sql_statements: arcetl.workspace.execute_sql(sql.format(**kwargs), database.ADDRESSING.path) # Jobs. MONTHLY_JOB = Job("Address_Reports_Monthly", etls=[site_address_maint_summary_etl]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__") } pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
"datasets": ["info", "address"], }, ] for kwargs in update_kwargs: for key in kwargs["datasets"]: LOG.info("Update %s in %s.", kwargs["field_names"][1], dataset_path[key]) arcetl.features.update_from_iters(dataset_path[key], id_field_names=["geofeat_id"], delete_missing_features=False, **kwargs) # Jobs. NIGHTLY_JOB = Job("Address_Assess_Tax_Info_Nightly", etls=[assess_tax_info_update]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__") } pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
join_dataset_path=hydrants_copy.path, join_field_name=name, on_field_pairs=[("facility_intid", "hydrant_id")], ) # Remove features without a near-hydrant (should not happen). etl.transform( arcetl.features.delete, dataset_where_sql="facility_intid is null" ) etl.load(dataset.SITE_ADDRESS_CLOSEST_HYDRANT.path()) # Jobs. WEEKLY_JOB = Job( "Service_Facility_Datasets_Weekly", etls=[closest_hydrant_etl, closest_fire_station_etl] ) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = {key for key in list(globals()) if not key.startswith("__")} pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines] for pipeline in pipelines:
# "one_way", # "flow", # ], # **kwargs # ) # arcetl.attributes.update_by_function( # field_name="mailcity", function=city_name_case, **kwargs # ) # update.force_title_case(field_names=["county"], **kwargs) # Jobs. NIGHTLY_JOB = Job( "Production_Datasets_Nightly", etls=[ proposed_street_name_update, mailing_city_area_etl, production_update_etl ], ) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__") }
-S {name}: server instance name. -E: trusted connection. -d {name}: database name. -b: terminate batch job if errors. -Q "{string}": query string. """ call_string = " ".join([ "sqlcmd.exe -S {} -E -d RLID -b -Q", '"exec dbo.proc_load_GIS @as_return_msg = null, @ai_return_code = null;"', ]) subprocess.check_call(call_string.format("gisql113")) # Jobs. WEEKLY_JOB = Job("RLID_GIS_Load_Weekly", etls=[load_rlid_gis]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__") } pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
def general_land_use_codes_etl(): """Run ETL for general land use codes.""" with arcetl.ArcETL("General Land Use Codes") as etl: etl.extract(dataset.LAND_USE_CODES_USE_CODES.path("maint")) etl.load(dataset.LAND_USE_CODES_USE_CODES.path("pub")) # Jobs. WEEKLY_JOB = Job( "Land_Use_Datasets", etls=[ # Pass 1. building_etl, detailed_land_use_codes_etl, general_land_use_codes_etl, # Pass 2. land_use_area_etl, ], ) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key
) with conn: path.archive_directory( directory_path=DELIVERABLES_PATH, archive_path=zip_path, directory_as_base=False, archive_exclude_patterns=[".lock", ".zip"], ) zip_url = url.RLID_MAPS + "Download/" + zip_name send_links_email(urls=[zip_url], **MESSAGE_KWARGS) # Jobs. MONTHLY_JOB = Job("LCSO_CAD_Delivery", etls=[lcso_cad_datasets_etl]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") pipelines = [globals()[arg] for arg in args.parse_args().pipelines] for pipeline in pipelines: execute_pipeline(pipeline) if __name__ == "__main__":
message_body += "<h2>Datasets listed in DATASET_KWARGS that do not exist</h2><ul>{}</ul>".format( "".join("<li>{}</li>".format(item) for item in datasets["listed_not_exist"])) if message_body: LOG.info("Found update issues: sending email.") send_email(subject="RLIDGeo Update Issues", body=message_body, body_format="HTML", **KWARGS_ISSUES_MESSAGE) else: LOG.info("No update issues found.") # Jobs. MONTHLY_JOB = Job("RLIDGeo_Monthly", etls=[snapshot_etl]) WEEKLY_JOB = Job( "RLIDGeo_Weekly", etls=[ datasets_primary_update, datasets_secondary_update, msag_update, warehouse_issues, ], ) # Execution. def main():
arcetl.features.delete_by_id, delete_ids=ids["hold"], id_field_names="site_address_gfid", ) LOG.info("%s addresses held from publication", len(ids["hold"])) LOG.info("%s addresses rolled-back from publication", len(ids["rollback"])) if any([ids["hold"], ids["rollback"]]): send_publication_issues_message() etl.load(dataset.SITE_ADDRESS.path("pub")) send_new_lincom_address_message() # Jobs. WEEKLY_JOB = Job("Address_Datasets_Weekly", etls=[site_address_etl, facility_etl]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__") } pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
result_response = session.post(url=url.DEQ_WEB + 'wq/onsite/sdsresults.asp', params=FORM_PAYLOAD, headers={'Referer': form_response.url}) csv_relpath = re.search(CSV_HREF_PATTERN, result_response.text).group(0).split('"')[1] csv_url = requests.compat.urljoin(url.DEQ_WEB, csv_relpath) csv_response = session.get(url=csv_url, headers={'Referer': result_response.url}) with open(LP_DEQ_CSV_PATH, 'wb') as csvfile: csvfile.write(csv_response.content) # Jobs. INPUT_HOURLY_JOB = Job('ePermitting_Input_Hourly', etls=(lp_deq_etl, )) # Execution. DEFAULT_PIPELINES = (INPUT_HOURLY_JOB, ) def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument('pipelines', nargs='*', help="Pipeline(s) to run") # Collect pipeline objects. if args.parse_args().pipelines: pipelines = tuple(globals()[arg] for arg in args.parse_args().pipelines) else:
This script should only be used for updating geodatabase datasets & other managed data stores. Purely file-based formats like shapefiles are best updated via `file_datasets_etl`, for reasons related to locking mechanisms. """ conn = credential.UNCPathCredential(DATA_PATH, **credential.CPA_MAP_SERVER) with conn: for kwargs in DATASET_KWARGS_WEEKLY: if kwargs.get("source_path"): transform.etl_dataset(**kwargs) # Jobs. DAILY_JOB = Job("GIMAP_Datasets_Daily", etls=[daily_datasets_etl]) WEEKLY_01_JOB = Job("GIMAP_Datasets_Weekly_01", etls=[file_datasets_etl]) WEEKLY_02_JOB = Job( "GIMAP_Datasets_Weekly_02", etls=[rlidgeo_datasets_etl, weekly_datasets_etl, locators_etl], ) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser()
LOG.info("Starting compression of geodatabases.") for geodatabase in randomized(database.GISRV106_DATABASES): if not geodatabase.compress: continue arcetl.workspace.compress(geodatabase.path) LOG.info("Geodatabases compression complete.") # Jobs. NIGHTLY_JOB = Job( "Geodatabase_Maintenance_Nightly", etls=[ geodatabase_compress_etl, geodatabase_backup_schema_etl, geodatabase_backup_datasets_etl, geodatabase_backup_build_etl, ], ) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__")
result_key = update_tax_map( staging_path, rlid_path, release_date, archive_previous=True ) count[result_key] += 1 document.log_state_counts(count, documents_type="tax maps") # Finally, update tax map repository currency date (if we placed any). if count["updated"]: rlid_data_currency_setter("Tax Maps", max(file_name_release_date.values())) elapsed(start_time, LOG) LOG.info("END SCRIPT: Update") # Jobs. DAILY_JOB = Job("RLID_Documents_Daily", etls=[tax_maps_staging_update, tax_maps_update]) NIGHTLY_JOB = Job( "RLID_Documents_Nightly", etls=[property_cards_staging_update, property_cards_update], ) WEEKLY_JOB = Job( "RLID_Documents_Weekly", etls=[petition_documents_update, plat_maps_update, tax_maps_not_in_source_etl], ) # Execution.
WEEKLY_JOB = Job( "Boundary_Datasets_Weekly", etls=[ # City boundaries. annexation_history_etl, incorporated_city_limits_etl, ugb_etl, ugb_line_etl, # Education boundaries. elementary_school_area_etl, elementary_school_line_etl, high_school_area_etl, high_school_line_etl, middle_school_area_etl, middle_school_line_etl, school_district_etl, # Election boundaries. city_ward_etl, county_commissioner_dist_etl, election_precinct_etl, epud_subdistrict_etl, eweb_commissioner_etl, lcc_board_zone_etl, swc_district_etl, state_representative_dist_etl, state_senator_district_etl, # Other/miscellaneous boundaries. zip_code_area_etl, ], )
) # Assign effective date for new ranges. etl.transform( arcetl.attributes.update_by_function, field_name="effective_date", function=datetime.date.today, field_as_first_arg=False, dataset_where_sql="effective_date is null", ) etl.load(dataset.MSAG_RANGE.path("current")) # Jobs. WEEKLY_JOB = Job("MSAG_Weekly", etls=[msag_ranges_current_etl]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = {key for key in list(globals()) if not key.startswith("__")} pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines] for pipeline in pipelines: execute_pipeline(pipeline)
"""Run ETL for extracts forEugene Parcel Database CESQL024 (dev: CESQL023). Confirmed by a message from Barry Bogart (2014-10-27), the parcel database is only in use to support the legacy app Special Assessments/Accounts Receivable (SPAARS). Barry: "SPAARS is an older app that will presumably be replaced before too many years from now, but I am not aware of any active project at this time." """ for table_name, sql in EXTRACT_TABLE_QUERY_SQL.items(): file_path = os.path.join(path.REGIONAL_STAGING, "EugeneParcelDB", table_name + ".txt") extract_database_file(file_path, sql) # Jobs. WEEKLY_JOB = Job("Eugene_Parcel_Database_Weekly", etls=[eugene_parcel_database_etl]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__") } pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
features = ((maptaxlot, box.esri_geometry) for maptaxlot, box in bound_boxes) with arcetl.ArcETL("Taxlot Focus Boxes - {}".format( scale.title())) as etl: etl.init_schema(dataset.TAXLOT_FOCUS_BOX.path(scale)) etl.transform( arcetl.features.insert_from_iters, insert_features=features, field_names=["maptaxlot", "shape@"], ) etl.load(dataset.TAXLOT_FOCUS_BOX.path(scale)) # Jobs. WEEKLY_JOB = Job("Spatial_Reference_Datasets_Weekly", etls=[taxlot_focus_box_etl]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__") } pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
arg_field_names=["approx_acres", "approx_taxlot_acres"], ) # Remove minimal overlays. etl.transform(arcetl.features.delete, dataset_where_sql="taxlot_area_ratio <= 0.001") etl.load(dataset.TAXLOT_FIRE_PROTECTION.path()) # Jobs. BOUNDARY_DATASETS_JOB = Job( "Public_Safety_Boundary_Datasets", etls=[ # Pass 1. ambulance_service_area_etl, fire_protection_area_etl, psap_area_etl, # Pass 2. emergency_service_zone_etl, ], ) TAXLOT_FIRE_PROTECTION_JOB = Job("Taxlot_Fire_Protection_Dataset", etls=[taxlot_fire_protection_etl]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser()
with csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerow(["document_id", "document_path", "check_time"]) for doc_path in rlid_record_paths(): if not os.path.exists(doc_path): doc_id = os.path.splitext(os.path.basename(doc_path))[0] csvwriter.writerow((doc_id, doc_path, check_time)) missing_count += 1 LOG.info("Found %s missing documents.", missing_count) LOG.info("End: Compile.") elapsed(start_time, LOG) # Jobs. HOURLY_JOB = Job("RLID_Documents_Deeds_Records_Hourly", etls=[deeds_records_update]) WEEKLY_JOB = Job("RLID_Documents_Deeds_Records_Weekly", etls=[missing_in_rlid_etl]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__") }
""" conn = credential.UNCPathCredential(path.RLID_MAPS_DATA_SHARE, **credential.CPA_MAP_SERVER) with conn: for gdb_relpath in sorted(KWARGS_MONTHLY_DATASETS): LOG.info("Update datasets in %s", gdb_relpath) gdb_path = os.path.join(DATA_PATH, gdb_relpath) for kwargs in KWARGS_MONTHLY_DATASETS[gdb_relpath]: kwargs['output_path'] = os.path.join(gdb_path, kwargs['output_name']) transform.etl_dataset(**kwargs) # Jobs. NIGHTLY_JOB = Job('OEM_Tillamook_Service_Datasets_Nightly', etls=(service_datasets_nightly_etl, )) MONTHLY_JOB = Job('OEM_Tillamook_Service_Datasets_Monthly', etls=(service_datasets_monthly_etl, )) # Execution. DEFAULT_PIPELINES = () def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument('pipelines', nargs='*', help="Pipeline(s) to run") # Collect pipeline objects. pipelines = (tuple(globals()[arg] for arg in args.parse_args().pipelines)
##TODO: Check dicts for counts. If all/most of a column is None, throw error & don't write. def postal_info_update(): """Run update for address postal info dataset.""" arcetl.features.update_from_dicts( dataset.ADDRESS_POSTAL_INFO.path(), update_features=postal_info_rows, id_field_names=dataset.ADDRESS_POSTAL_INFO.id_field_names, field_names=dataset.ADDRESS_POSTAL_INFO.field_names, ) # Jobs. WEEKLY_JOB = Job("Address_Postal_Info_Weekly", etls=[address_workfile_etl, postal_info_update]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = { key for key in list(globals()) if not key.startswith("__") } pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
directory_as_base=True, archive_exclude_patterns=[".lock"], ) zip_url = url.RLID_MAPS + "Download/" + zip_name send_message_tillamook(zip_url, metadata_where_sql="in_tillamook = 1", **TILLAMOOK_MESSAGE_KWARGS) # Jobs. MONTHLY_JOB = Job( "OEM_Deliveries_Monthly", etls=[ tillamook_911_delivery_etl, tillamook_delivery_etl, oem_lane_delivery_etl, oem_tillamook_delivery_etl, ], ) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") pipelines = [globals()[arg] for arg in args.parse_args().pipelines] for pipeline in pipelines: execute_pipeline(pipeline)
} if owner not in owners: owners.append(owner) LOG.info("End: Collect.") etl.init_schema(dataset.TAXLOT_OWNER.path("pub")) etl.transform( arcetl.features.insert_from_dicts, insert_features=owners, field_names=rlid_field_name.keys(), ) etl.load(dataset.TAXLOT_OWNER.path("pub")) # Jobs. DAILY_JOB = Job("Assess_Tax_Datasets_Daily", etls=[comparable_sale_taxlot_etl]) WEEKLY_JOB = Job( "Assess_Tax_Datasets_Weekly", etls=[ plat_etl, plss_dlc_etl, plss_quarter_section_etl, plss_section_etl, plss_township_etl, tax_code_area_etl, taxlot_owner_etl, ], ) # Execution.
# conn = credential.UNCPathCredential(path.XX_SHARE, **credential.XX_SHARE) # with conn, arcetl.ArcETL("##TODO: Update Name") as etl: with arcetl.ArcETL("##TODO: Update Name") as etl: ##TODO: Add extract keyword arguments (if necessary). etl.extract("##TODO: dataset_path") ##TODO: Add transform keyword arguments (if necessary). etl.transform("##TODO: transformation (e.g. arcetl.features.dissolve)") ##TODO: Add load keyword arguments (if necessary). etl.update("##TODO: dataset_path", "##TODO: id_field_names") # Jobs. # Match name to ETL-Job metadata table (case-insensitive). etls must be an iterable. TEMPLATE_JOB = Job("Job_Name", etls=[template_etl]) # Execution. def main(): """Script execution code.""" args = argparse.ArgumentParser() args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run") available_names = {key for key in list(globals()) if not key.startswith("__")} pipeline_names = args.parse_args().pipelines if pipeline_names and available_names.issuperset(pipeline_names): pipelines = [globals()[arg] for arg in args.parse_args().pipelines] for pipeline in pipelines: execute_pipeline(pipeline)