issue.setdefault("maint_notes")
                issue.setdefault("maint_init_date", datetime.datetime.now())
            etl.transform(
                arcetl.features.insert_from_dicts,
                insert_features=issues,
                field_names=issues[0].keys(),
            )
        etl.update(
            dataset.ADDRESS_ISSUES.path(),
            id_field_names=["site_address_gfid", "description"],
        )


# Jobs.

NIGHTLY_JOB = Job("Address_Issues_Nightly", etls=[issues_update])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
    }
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
Esempio n. 2
0
    """Run update for current license usage."""
    LOG.info("Start: Collect license usage from FlexNet License Manager.")
    session = database.CPA_ADMIN.create_session()
    names = (name
             for name, in session.query(LicenseArcGISDesktop.internal_name))
    for name in names:
        session.add_all(
            LicenseUsage(**usage) for usage in license_usage_info(name))
    session.commit()
    session.close()
    LOG.info("End: Collect.")


# Jobs.

FIVE_MINUTE_JOB = Job("License_Usage", etls=[license_usage_update])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
    }
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
def locators_update():
    """Run update for map server locators/geocoders."""
    for name in LOCATOR_NAMES:
        locator_path = os.path.join(GEOCODE_PATH, name)
        package_path = os.path.join(GEOCODE_PATH, "packaged", name + ".gcpk")
        arcetl.workspace.build_locator(locator_path)
        ##TODO: Create arcetl.workspace.package_locator function, then use here.
        old_overwrite_output = arcpy.env.overwriteOutput
        arcpy.env.overwriteOutput = True
        arcpy.PackageLocator_management(locator_path, package_path)
        arcpy.env.overwriteOutput = old_overwrite_output


# Jobs.

WEEKLY_JOB = Job("Regional_Data_Warehouse_Weekly",
                 etls=[datasets_update, locators_update])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
    }
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
Esempio n. 4
0
        for _dataset in DATASETS:
            arcetl.features.update_from_dicts(
                dataset_path=_dataset.path("pub"),
                update_features=source_rows(snapshot_db_path,
                                            _dataset.path("source")),
                id_field_names=_dataset.id_field_names,
                field_names=_dataset.field_names,
                delete_missing_features=False,
                use_edit_session=False,
            )
    LOG.info("End: Update.")


# Jobs.

NIGHTLY_JOB = Job("CLMPO_GBF_Nightly", etls=[gbf_pub_update])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    # Collect pipeline objects.
    if args.parse_args().pipelines:
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
    else:
        pipelines = []
    # Execute.
    for pipeline in pipelines:
        etl.load(dataset.ZONING_COUNTY.path("pub"))


##TODO: Auto-generate LCOGGeo.lcagadm.ZoningOverlay from overX fields & aliases. Also move to ETL_Load_A.

# Jobs.

BOUNDARY_DATASETS_JOB = Job(
    "Planning_Development_Boundary_Datasets",
    etls=[
        # Pass 1.
        metro_plan_boundary_etl,
        nodal_development_area_etl,
        plan_designation_city_etl,
        willamette_river_greenway_etl,
        zoning_city_etl,
        # Pass 2.
        plan_designation_county_etl,
        zoning_county_etl,
        # Pass 3.
        plan_designation_etl,
        zoning_etl,
    ],
)

TAXLOT_ZONING_JOB = Job("Taxlot_Zoning_Dataset", etls=[taxlot_zoning_etl])

# Execution.


def main():
        ]
        transform.update_attributes_by_values(etl, value_kwargs)
        # Build values: Concatenations.
        etl.transform(
            arcetl.attributes.update_by_function,
            field_name="full_name",
            function=concatenate_arguments,
            field_as_first_arg=False,
            arg_field_names=["predir", "name", "type", "sufdir"],
        )
        etl.load(dataset.TILLAMOOK_ROAD_CENTERLINE.path("pub"))


# Jobs.

NIGHTLY_JOB = Job("OEM_Tillamook_Datasets_Nightly",
                  etls=[production_datasets_etl])

WEEKLY_JOB = Job(
    "OEM_Tillamook_Datasets_Weekly",
    etls=[
        emergency_service_zone_etl,
        # Must addresses & roads after emergency service zones.
        address_point_etl,
        road_centerline_etl,
        publication_issues_message_etl,
        # Must run after addresses.
        msag_ranges_current_etl,
        # Must run after current MSAG ranges.
        msag_update,
        # Must run after *all* dataset ETLs.
        metadata_tillamook_ecd_etl,
                left join Report_Ordered as sorted
                    on report.row_rank - 1 = sorted.row_rank;
        """,
    ]
    kwargs = {
        "dataset": "Addressing.dbo.SiteAddress_evw",
        "report": "Addressing.dbo.Report_SiteAddress_MaintSummary",
    }
    for sql in sql_statements:
        arcetl.workspace.execute_sql(sql.format(**kwargs),
                                     database.ADDRESSING.path)


# Jobs.

MONTHLY_JOB = Job("Address_Reports_Monthly",
                  etls=[site_address_maint_summary_etl])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
    }
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
Esempio n. 8
0
            "datasets": ["info", "address"],
        },
    ]
    for kwargs in update_kwargs:
        for key in kwargs["datasets"]:
            LOG.info("Update %s in %s.", kwargs["field_names"][1],
                     dataset_path[key])
            arcetl.features.update_from_iters(dataset_path[key],
                                              id_field_names=["geofeat_id"],
                                              delete_missing_features=False,
                                              **kwargs)


# Jobs.

NIGHTLY_JOB = Job("Address_Assess_Tax_Info_Nightly",
                  etls=[assess_tax_info_update])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
    }
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
                join_dataset_path=hydrants_copy.path,
                join_field_name=name,
                on_field_pairs=[("facility_intid", "hydrant_id")],
            )
        # Remove features without a near-hydrant (should not happen).
        etl.transform(
            arcetl.features.delete, dataset_where_sql="facility_intid is null"
        )
        etl.load(dataset.SITE_ADDRESS_CLOSEST_HYDRANT.path())


# Jobs.


WEEKLY_JOB = Job(
    "Service_Facility_Datasets_Weekly",
    etls=[closest_hydrant_etl, closest_fire_station_etl]
)


# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {key for key in list(globals()) if not key.startswith("__")}
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
        for pipeline in pipelines:
Esempio n. 10
0
#             "one_way",
#             "flow",
#         ],
#         **kwargs
#     )
#     arcetl.attributes.update_by_function(
#         field_name="mailcity", function=city_name_case, **kwargs
#     )
#     update.force_title_case(field_names=["county"], **kwargs)

# Jobs.

NIGHTLY_JOB = Job(
    "Production_Datasets_Nightly",
    etls=[
        proposed_street_name_update, mailing_city_area_etl,
        production_update_etl
    ],
)

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
    }
Esempio n. 11
0
        -S {name}: server instance name.
        -E: trusted connection.
        -d {name}: database name.
        -b: terminate batch job if errors.
        -Q "{string}": query string.
    """
    call_string = " ".join([
        "sqlcmd.exe -S {} -E -d RLID -b -Q",
        '"exec dbo.proc_load_GIS @as_return_msg = null, @ai_return_code = null;"',
    ])
    subprocess.check_call(call_string.format("gisql113"))


# Jobs.

WEEKLY_JOB = Job("RLID_GIS_Load_Weekly", etls=[load_rlid_gis])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
    }
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
Esempio n. 12
0
def general_land_use_codes_etl():
    """Run ETL for general land use codes."""
    with arcetl.ArcETL("General Land Use Codes") as etl:
        etl.extract(dataset.LAND_USE_CODES_USE_CODES.path("maint"))
        etl.load(dataset.LAND_USE_CODES_USE_CODES.path("pub"))


# Jobs.

WEEKLY_JOB = Job(
    "Land_Use_Datasets",
    etls=[
        # Pass 1.
        building_etl,
        detailed_land_use_codes_etl,
        general_land_use_codes_etl,
        # Pass 2.
        land_use_area_etl,
    ],
)

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
Esempio n. 13
0
    )
    with conn:
        path.archive_directory(
            directory_path=DELIVERABLES_PATH,
            archive_path=zip_path,
            directory_as_base=False,
            archive_exclude_patterns=[".lock", ".zip"],
        )
    zip_url = url.RLID_MAPS + "Download/" + zip_name
    send_links_email(urls=[zip_url], **MESSAGE_KWARGS)


# Jobs.


MONTHLY_JOB = Job("LCSO_CAD_Delivery", etls=[lcso_cad_datasets_etl])


# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
    for pipeline in pipelines:
        execute_pipeline(pipeline)


if __name__ == "__main__":
Esempio n. 14
0
        message_body += "<h2>Datasets listed in DATASET_KWARGS that do not exist</h2><ul>{}</ul>".format(
            "".join("<li>{}</li>".format(item)
                    for item in datasets["listed_not_exist"]))
    if message_body:
        LOG.info("Found update issues: sending email.")
        send_email(subject="RLIDGeo Update Issues",
                   body=message_body,
                   body_format="HTML",
                   **KWARGS_ISSUES_MESSAGE)
    else:
        LOG.info("No update issues found.")


# Jobs.

MONTHLY_JOB = Job("RLIDGeo_Monthly", etls=[snapshot_etl])

WEEKLY_JOB = Job(
    "RLIDGeo_Weekly",
    etls=[
        datasets_primary_update,
        datasets_secondary_update,
        msag_update,
        warehouse_issues,
    ],
)

# Execution.


def main():
            arcetl.features.delete_by_id,
            delete_ids=ids["hold"],
            id_field_names="site_address_gfid",
        )
        LOG.info("%s addresses held from publication", len(ids["hold"]))
        LOG.info("%s addresses rolled-back from publication",
                 len(ids["rollback"]))
        if any([ids["hold"], ids["rollback"]]):
            send_publication_issues_message()
        etl.load(dataset.SITE_ADDRESS.path("pub"))
    send_new_lincom_address_message()


# Jobs.

WEEKLY_JOB = Job("Address_Datasets_Weekly",
                 etls=[site_address_etl, facility_etl])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
    }
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
        result_response = session.post(url=url.DEQ_WEB +
                                       'wq/onsite/sdsresults.asp',
                                       params=FORM_PAYLOAD,
                                       headers={'Referer': form_response.url})
        csv_relpath = re.search(CSV_HREF_PATTERN,
                                result_response.text).group(0).split('"')[1]
        csv_url = requests.compat.urljoin(url.DEQ_WEB, csv_relpath)
        csv_response = session.get(url=csv_url,
                                   headers={'Referer': result_response.url})
    with open(LP_DEQ_CSV_PATH, 'wb') as csvfile:
        csvfile.write(csv_response.content)


# Jobs.

INPUT_HOURLY_JOB = Job('ePermitting_Input_Hourly', etls=(lp_deq_etl, ))

# Execution.

DEFAULT_PIPELINES = (INPUT_HOURLY_JOB, )


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument('pipelines', nargs='*', help="Pipeline(s) to run")
    # Collect pipeline objects.
    if args.parse_args().pipelines:
        pipelines = tuple(globals()[arg]
                          for arg in args.parse_args().pipelines)
    else:
Esempio n. 17
0
    This script should only be used for updating geodatabase datasets & other managed
    data stores. Purely file-based formats like shapefiles are best updated via
    `file_datasets_etl`, for reasons related to locking mechanisms.
    """
    conn = credential.UNCPathCredential(DATA_PATH, **credential.CPA_MAP_SERVER)
    with conn:
        for kwargs in DATASET_KWARGS_WEEKLY:
            if kwargs.get("source_path"):
                transform.etl_dataset(**kwargs)


# Jobs.


DAILY_JOB = Job("GIMAP_Datasets_Daily", etls=[daily_datasets_etl])

WEEKLY_01_JOB = Job("GIMAP_Datasets_Weekly_01", etls=[file_datasets_etl])

WEEKLY_02_JOB = Job(
    "GIMAP_Datasets_Weekly_02",
    etls=[rlidgeo_datasets_etl, weekly_datasets_etl, locators_etl],
)


# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    LOG.info("Starting compression of geodatabases.")
    for geodatabase in randomized(database.GISRV106_DATABASES):
        if not geodatabase.compress:
            continue

        arcetl.workspace.compress(geodatabase.path)
    LOG.info("Geodatabases compression complete.")


# Jobs.

NIGHTLY_JOB = Job(
    "Geodatabase_Maintenance_Nightly",
    etls=[
        geodatabase_compress_etl,
        geodatabase_backup_schema_etl,
        geodatabase_backup_datasets_etl,
        geodatabase_backup_build_etl,
    ],
)

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
Esempio n. 19
0
            result_key = update_tax_map(
                staging_path, rlid_path, release_date, archive_previous=True
            )
            count[result_key] += 1
    document.log_state_counts(count, documents_type="tax maps")
    # Finally, update tax map repository currency date (if we placed any).
    if count["updated"]:
        rlid_data_currency_setter("Tax Maps", max(file_name_release_date.values()))
    elapsed(start_time, LOG)
    LOG.info("END SCRIPT: Update")


# Jobs.


DAILY_JOB = Job("RLID_Documents_Daily", etls=[tax_maps_staging_update, tax_maps_update])


NIGHTLY_JOB = Job(
    "RLID_Documents_Nightly",
    etls=[property_cards_staging_update, property_cards_update],
)


WEEKLY_JOB = Job(
    "RLID_Documents_Weekly",
    etls=[petition_documents_update, plat_maps_update, tax_maps_not_in_source_etl],
)


# Execution.
Esempio n. 20
0
WEEKLY_JOB = Job(
    "Boundary_Datasets_Weekly",
    etls=[
        # City boundaries.
        annexation_history_etl,
        incorporated_city_limits_etl,
        ugb_etl,
        ugb_line_etl,
        # Education boundaries.
        elementary_school_area_etl,
        elementary_school_line_etl,
        high_school_area_etl,
        high_school_line_etl,
        middle_school_area_etl,
        middle_school_line_etl,
        school_district_etl,
        # Election boundaries.
        city_ward_etl,
        county_commissioner_dist_etl,
        election_precinct_etl,
        epud_subdistrict_etl,
        eweb_commissioner_etl,
        lcc_board_zone_etl,
        swc_district_etl,
        state_representative_dist_etl,
        state_senator_district_etl,
        # Other/miscellaneous boundaries.
        zip_code_area_etl,
    ],
)
Esempio n. 21
0
        )
        # Assign effective date for new ranges.
        etl.transform(
            arcetl.attributes.update_by_function,
            field_name="effective_date",
            function=datetime.date.today,
            field_as_first_arg=False,
            dataset_where_sql="effective_date is null",
        )
        etl.load(dataset.MSAG_RANGE.path("current"))


# Jobs.


WEEKLY_JOB = Job("MSAG_Weekly", etls=[msag_ranges_current_etl])


# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {key for key in list(globals()) if not key.startswith("__")}
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
        for pipeline in pipelines:
            execute_pipeline(pipeline)
Esempio n. 22
0
    """Run ETL for extracts forEugene Parcel Database CESQL024 (dev: CESQL023).

    Confirmed by a message from Barry Bogart (2014-10-27), the parcel database is only
    in use to support the legacy app Special Assessments/Accounts Receivable (SPAARS).
    Barry: "SPAARS is an older app that will presumably be replaced before too many
    years from now, but I am not aware of any active project at this time."
    """
    for table_name, sql in EXTRACT_TABLE_QUERY_SQL.items():
        file_path = os.path.join(path.REGIONAL_STAGING, "EugeneParcelDB",
                                 table_name + ".txt")
        extract_database_file(file_path, sql)


# Jobs.

WEEKLY_JOB = Job("Eugene_Parcel_Database_Weekly",
                 etls=[eugene_parcel_database_etl])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
    }
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
        features = ((maptaxlot, box.esri_geometry)
                    for maptaxlot, box in bound_boxes)
        with arcetl.ArcETL("Taxlot Focus Boxes - {}".format(
                scale.title())) as etl:
            etl.init_schema(dataset.TAXLOT_FOCUS_BOX.path(scale))
            etl.transform(
                arcetl.features.insert_from_iters,
                insert_features=features,
                field_names=["maptaxlot", "shape@"],
            )
            etl.load(dataset.TAXLOT_FOCUS_BOX.path(scale))


# Jobs.

WEEKLY_JOB = Job("Spatial_Reference_Datasets_Weekly",
                 etls=[taxlot_focus_box_etl])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
    }
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
Esempio n. 24
0
            arg_field_names=["approx_acres", "approx_taxlot_acres"],
        )
        # Remove minimal overlays.
        etl.transform(arcetl.features.delete,
                      dataset_where_sql="taxlot_area_ratio <= 0.001")
        etl.load(dataset.TAXLOT_FIRE_PROTECTION.path())


# Jobs.

BOUNDARY_DATASETS_JOB = Job(
    "Public_Safety_Boundary_Datasets",
    etls=[
        # Pass 1.
        ambulance_service_area_etl,
        fire_protection_area_etl,
        psap_area_etl,
        # Pass 2.
        emergency_service_zone_etl,
    ],
)

TAXLOT_FIRE_PROTECTION_JOB = Job("Taxlot_Fire_Protection_Dataset",
                                 etls=[taxlot_fire_protection_etl])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
Esempio n. 25
0
        with csvfile:
            csvwriter = csv.writer(csvfile)
            csvwriter.writerow(["document_id", "document_path", "check_time"])
            for doc_path in rlid_record_paths():
                if not os.path.exists(doc_path):
                    doc_id = os.path.splitext(os.path.basename(doc_path))[0]
                    csvwriter.writerow((doc_id, doc_path, check_time))
                    missing_count += 1
    LOG.info("Found %s missing documents.", missing_count)
    LOG.info("End: Compile.")
    elapsed(start_time, LOG)


# Jobs.

HOURLY_JOB = Job("RLID_Documents_Deeds_Records_Hourly",
                 etls=[deeds_records_update])

WEEKLY_JOB = Job("RLID_Documents_Deeds_Records_Weekly",
                 etls=[missing_in_rlid_etl])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
    }
    """
    conn = credential.UNCPathCredential(path.RLID_MAPS_DATA_SHARE,
                                        **credential.CPA_MAP_SERVER)
    with conn:
        for gdb_relpath in sorted(KWARGS_MONTHLY_DATASETS):
            LOG.info("Update datasets in %s", gdb_relpath)
            gdb_path = os.path.join(DATA_PATH, gdb_relpath)
            for kwargs in KWARGS_MONTHLY_DATASETS[gdb_relpath]:
                kwargs['output_path'] = os.path.join(gdb_path,
                                                     kwargs['output_name'])
                transform.etl_dataset(**kwargs)


# Jobs.

NIGHTLY_JOB = Job('OEM_Tillamook_Service_Datasets_Nightly',
                  etls=(service_datasets_nightly_etl, ))

MONTHLY_JOB = Job('OEM_Tillamook_Service_Datasets_Monthly',
                  etls=(service_datasets_monthly_etl, ))

# Execution.

DEFAULT_PIPELINES = ()


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument('pipelines', nargs='*', help="Pipeline(s) to run")
    # Collect pipeline objects.
    pipelines = (tuple(globals()[arg] for arg in args.parse_args().pipelines)
Esempio n. 27
0

##TODO: Check dicts for counts. If all/most of a column is None, throw error & don't write.
def postal_info_update():
    """Run update for address postal info dataset."""
    arcetl.features.update_from_dicts(
        dataset.ADDRESS_POSTAL_INFO.path(),
        update_features=postal_info_rows,
        id_field_names=dataset.ADDRESS_POSTAL_INFO.id_field_names,
        field_names=dataset.ADDRESS_POSTAL_INFO.field_names,
    )


# Jobs.

WEEKLY_JOB = Job("Address_Postal_Info_Weekly",
                 etls=[address_workfile_etl, postal_info_update])

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {
        key
        for key in list(globals()) if not key.startswith("__")
    }
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
Esempio n. 28
0
            directory_as_base=True,
            archive_exclude_patterns=[".lock"],
        )
    zip_url = url.RLID_MAPS + "Download/" + zip_name
    send_message_tillamook(zip_url,
                           metadata_where_sql="in_tillamook = 1",
                           **TILLAMOOK_MESSAGE_KWARGS)


# Jobs.

MONTHLY_JOB = Job(
    "OEM_Deliveries_Monthly",
    etls=[
        tillamook_911_delivery_etl,
        tillamook_delivery_etl,
        oem_lane_delivery_etl,
        oem_tillamook_delivery_etl,
    ],
)

# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
    for pipeline in pipelines:
        execute_pipeline(pipeline)
            }
            if owner not in owners:
                owners.append(owner)
        LOG.info("End: Collect.")
        etl.init_schema(dataset.TAXLOT_OWNER.path("pub"))
        etl.transform(
            arcetl.features.insert_from_dicts,
            insert_features=owners,
            field_names=rlid_field_name.keys(),
        )
        etl.load(dataset.TAXLOT_OWNER.path("pub"))


# Jobs.

DAILY_JOB = Job("Assess_Tax_Datasets_Daily", etls=[comparable_sale_taxlot_etl])

WEEKLY_JOB = Job(
    "Assess_Tax_Datasets_Weekly",
    etls=[
        plat_etl,
        plss_dlc_etl,
        plss_quarter_section_etl,
        plss_section_etl,
        plss_township_etl,
        tax_code_area_etl,
        taxlot_owner_etl,
    ],
)

# Execution.
Esempio n. 30
0
    # conn = credential.UNCPathCredential(path.XX_SHARE, **credential.XX_SHARE)
    # with conn, arcetl.ArcETL("##TODO: Update Name") as etl:
    with arcetl.ArcETL("##TODO: Update Name") as etl:
        ##TODO: Add extract keyword arguments (if necessary).
        etl.extract("##TODO: dataset_path")
        ##TODO: Add transform keyword arguments (if necessary).
        etl.transform("##TODO: transformation (e.g. arcetl.features.dissolve)")
        ##TODO: Add load keyword arguments (if necessary).
        etl.update("##TODO: dataset_path", "##TODO: id_field_names")


# Jobs.


# Match name to ETL-Job metadata table (case-insensitive). etls must be an iterable.
TEMPLATE_JOB = Job("Job_Name", etls=[template_etl])


# Execution.


def main():
    """Script execution code."""
    args = argparse.ArgumentParser()
    args.add_argument("pipelines", nargs="*", help="Pipeline(s) to run")
    available_names = {key for key in list(globals()) if not key.startswith("__")}
    pipeline_names = args.parse_args().pipelines
    if pipeline_names and available_names.issuperset(pipeline_names):
        pipelines = [globals()[arg] for arg in args.parse_args().pipelines]
        for pipeline in pipelines:
            execute_pipeline(pipeline)