Esempio n. 1
0
def det_tau_r(E_f, V_f, m_list, mu_xi, dp_tau, dp_r, tau_range, r_range, sV0):
    w_arr = np.linspace(0, 20, 300)
    tau_arr = np.linspace(tau_range[0], tau_range[1], dp_tau)
    r_arr = np.linspace(r_range[0], r_range[1], dp_tau)
    e_arr = orthogonalize([tau_arr, r_arr])
    x_axis = e_arr[0]
    y_axis = e_arr[1]
    for mi in m_list:
            res_array = np.zeros((dp_tau, dp_r))
            for i_tau, taui in enumerate(tau_arr):
                    for i_r, ri in enumerate(r_arr):
                        s = get_scale(mu_xi, mi, taui, ri)
                        print s
                        #sV0 = float(s * (pi * mu_r ** 2) ** (1. / mi))
                        T = 2. * taui / ri
                        s0 = ((T * (mi + 1) * sV0 ** mi) / (2. * E_f * pi * ri ** 2)) ** (1. / (mi + 1))
                        print s0
                        k = np.sqrt(T / E_f)
                        ef0 = k * np.sqrt(w_arr)
                        G = 1 - np.exp(-(ef0 / s0) ** (mi + 1))
                        mu_int = ef0 * E_f * V_f * (1 - G)
                        I = s0 * gamma(1 + 1. / (mi + 1)) * gammainc(1 + 1. / (mi + 1), (ef0 / s0) ** (mi + 1))
                        mu_broken = E_f * V_f * I / (mi + 1)
                        result = mu_int + mu_broken
                        sigma_c = np.max(result)
                        if sigma_c == result[-1]:
                            print "w_arr too short"
                            pass
                        res_array[i_tau, i_r] = sigma_c
                    
            mlab.surf(x_axis, y_axis, res_array / 100.)
    mlab.xlabel("det tau")
    mlab.ylabel("det r")
    mlab.zlabel("sigma")
    mlab.show()
Esempio n. 2
0
def rand_r_det_tau( E_f, V_f, tau_range, CoV_r_range, mu_r , dp_tau, dp_r, sV0 ):
    m = m_list[0]
    s0 = ( ( mu_tau * ( m + 1 ) * sV0 ** m ) / ( E_f * pi * mu_r ** 3 ) ) ** ( 1. / ( m + 1 ) )
    mu_xi = s0 * gamma( 1. + 1. / ( 1. + m ) )
    #loop with rand tau and rand r
    for mi in m_list:
        ##############
        Pf = RV( 'uniform', loc = 0.0, scale = 1.0 )
        w_arr = np.linspace( 0, 2.0, 30 )
        cb = CBResidual( include_pullout = True )
        tau_arr = np.linspace( tau_range[0], tau_range[1], dp_tau )
        CoV_r_arr = np.linspace( 0.0001, 0.5, dp_r )
        loc_r_arr = mu_r - CoV_r_arr * mu_r * 3 ** 0.5
        scale_r_arr = 2 * mu_r - 2 * loc_r_arr
        e_arr = orthogonalize( [tau_arr, CoV_r_arr] )
        x_axis = e_arr[0]
        y_axis = e_arr[1]
        stats_r = []
        for s in range( dp_r ):
            stats_r.append( RV( 'uniform', loc = loc_r_arr[s], scale = scale_r_arr[s] ) )
    
        #gen Tuple of [loc,scale]
    
        res_array = np.zeros( ( dp_tau, dp_r ) )
        for i_tau, taui in enumerate( tau_arr ):
    
                for i_r, ri in enumerate( stats_r ):
                    s0i = mu_xi / gamma( 1. + 1. / ( 1. + mi ) )
                    sV0i = ( ( s0i ** ( mi + 1 ) * E_f * pi * mu_r ** 3. ) / ( taui * ( mi + 1. ) ) ) ** ( 1. / mi )
                    total = SPIRRID( q = cb,
                            sampling_type = 'MCS',
                            evars = dict( w = w_arr ),
                            tvars = dict( tau = taui, E_f = E_f, V_f = V_f, r = ri,
                                       m = mi, sV0 = sV0i, Pf = Pf ),
                            n_int = 60 )
                    if isinstance( ri, RV ):
                        r_arr = np.linspace( ri.ppf( 0.001 ), ri.ppf( 0.999 ), 200 )
                        Er = np.trapz( r_arr ** 2 * ri.pdf( r_arr ), r_arr )
                    else:
                        Er = ri ** 2
                    result = total.mu_q_arr / Er
                    sigma_c = np.max( result )
                    if sigma_c == result[-1]:
                        print "w_arr too short"
                        pass
                    res_array[i_tau, i_r] = sigma_c
    
        #mayaviplot
        print np.max( res_array )
        mlab.surf( x_axis, y_axis, res_array )
        #
        mlab.view( 0., 0. )
        mlab.xlabel( "det tau" )
        mlab.ylabel( "rand r" )
        mlab.zlabel( "sigma" )
    mlab.show()
Esempio n. 3
0
def rand_tau_det_r( E_f, V_f, CoV_tau_range, r_range, mu_tau , dp_tau, dp_r, sV0 ):
    m = m_list[0]
    s0 = ( ( mu_tau * ( m + 1 ) * sV0 ** m ) / ( E_f * pi * mu_r ** 3 ) ) ** ( 1. / ( m + 1 ) )
    mu_xi = s0 * gamma( 1. + 1. / ( 1. + m ) )
    for mi in m_list:
        #######################################
        Pf = RV( 'uniform', loc = 0.0, scale = 1.0 )
        w_arr = np.linspace( 0, 5, 300 )
        cb = CBResidual( include_pullout = True )
        # CoV generation
        CoV_tau_arr = np.linspace( CoV_tau_range[0], CoV_tau_range[1], dp_tau )
        loc_tau_arr = mu_tau - CoV_tau_arr * mu_tau * 3 ** 0.5
        scale_tau_arr = 2 * mu_tau - 2 * loc_tau_arr
        r_arr = np.linspace( r_range[0], r_range[1], dp_r )
        e_arr = orthogonalize( [CoV_tau_arr, r_arr] )
        x_axis = e_arr[0]
        y_axis = e_arr[1]
        #TAU gen Tuple of [loc,scale]
        stats_tau = []
        for s in range( dp_tau ):
            stats_tau.append( RV( 'uniform', loc = loc_tau_arr[s], scale = scale_tau_arr[s] ) )
    
        #r gen Tuple of [loc,scale]
        res_array = np.zeros( ( dp_tau, dp_r ) )
        for i_tau, taui in enumerate( stats_tau ): 
                for i_r, ri in enumerate( r_arr ):
                    print i_tau, i_r
                    s0i = mu_xi / gamma( 1. + 1. / ( 1. + mi ) )
                    sV0i = ( ( s0i ** ( mi + 1 ) * E_f * pi * ri ** 3. ) / ( mu_tau * ( mi + 1. ) ) ) ** ( 1. / mi )
                    total = SPIRRID( q = cb,
                            sampling_type = 'MCS',
                            evars = dict( w = w_arr ),
                            tvars = dict( tau = taui, E_f = E_f, V_f = V_f, r = ri,
                                       m = mi, sV0 = sV0i, Pf = Pf ),
                            n_int = 60 )
                    if isinstance( ri, RV ):
                        r_arr = np.linspace( ri.ppf( 0.001 ), ri.ppf( 0.999 ), 200 )
                        Er = np.trapz( r_arr ** 2 * ri.pdf( r_arr ), r_arr )
                    else:
                        Er = ri ** 2
                    #total(evars=dict(w=[3.]))
                    x = [2.]
                    x = np.array( x )
                    
                    result = total.mu_q_arr / Er
                    sigma_c = np.max( result )
                    if sigma_c == result[-1]:
                        print "w_arr too short"
                    res_array[i_tau, i_r] = sigma_c
        #mayaviplot
        mlab.surf( x_axis, y_axis * 50, res_array, warpscale = 0.1 )
        mlab.view( 0., 0. )
        mlab.xlabel( "rand tau" )
        mlab.ylabel( "det r" )
        mlab.zlabel( "sigma" )
    mlab.show()
Esempio n. 4
0
def det_tau_r( E_f, V_f, m_list, dp_tau, dp_r, tau_range, r_range, sV0 ):
    m = m_list[0]
    s0 = ( ( mu_tau * ( m + 1 ) * sV0 ** m ) / ( E_f * pi * mu_r ** 3 ) ) ** ( 1. / ( m + 1 ) )
    mu_xi = s0 * gamma( 1. + 1. / ( 1. + m ) )
    ################
    w_arr = np.linspace( 0, 100, 300 )
    tau_arr = np.linspace( tau_range[0], tau_range[1], dp_tau )
    r_arr = np.linspace( r_range[0], r_range[1], dp_tau )
    e_arr = orthogonalize( [tau_arr, r_arr] )
    x_axis = e_arr[0]
    y_axis = e_arr[1]
    for i_m, mi in enumerate( m_list ):
            res_array = np.zeros( ( dp_tau, dp_r ) )
            for i_tau, taui in enumerate( tau_arr ):
                    for i_r, ri in enumerate( r_arr ):
                        s0i = mu_xi / gamma( 1. + 1. / ( 1. + mi ) )
                        sV0i = ( ( s0i ** ( mi + 1 ) * E_f * pi * ri ** 3. ) / ( taui * ( mi + 1. ) ) ) ** ( 1. / mi )
                        T = 2. * taui / ri
                        s0 = ( ( T * ( mi + 1 ) * sV0i ** mi ) / ( 2. * E_f * pi * ri ** 2 ) ) ** ( 1. / ( mi + 1 ) )
                        k = np.sqrt( T / E_f )
                        ef0 = k * np.sqrt( w_arr )
                        G = 1 - np.exp( -( ef0 / s0 ) ** ( mi + 1 ) )
                        mu_int = ef0 * E_f * V_f * ( 1 - G )
                        I = s0 * gamma( 1 + 1. / ( mi + 1 ) ) * gammainc( 1 + 1. / ( mi + 1 ), ( ef0 / s0 ) ** ( mi + 1 ) )
                        mu_broken = E_f * V_f * I / ( mi + 1 )
                        result = mu_int + mu_broken
                        sigma_c = np.max( result )
                        if sigma_c == result[-1]:
                            print "w_arr too short"
                            pass
                        res_array[i_tau, i_r] = sigma_c
            mlab.surf( x_axis, y_axis, res_array / 100. )
    mlab.xlabel( "det tau" )
    mlab.ylabel( "det r" )
    mlab.zlabel( "sigma" )
    mlab.show()
Esempio n. 5
0
def rand_tau_r( E_f, V_f, mu_tau, mu_r, m_list, CoV_tau_range, CoV_r_range, dp_tau, dp_r, sV0 ):
    #rand tau and rand r
    m = m_list[0]
    s0 = ( ( mu_tau * ( m + 1 ) * sV0 ** m ) / ( E_f * pi * mu_r ** 3 ) ) ** ( 1. / ( m + 1 ) )
    mu_xi = s0 * gamma( 1. + 1. / ( 1. + m ) )
    for i_m, mi in enumerate( m_list ):
        s0i = mu_xi / gamma( 1. + 1. / ( 1. + mi ) )
        sV0i = ( ( s0i ** ( mi + 1 ) * E_f * pi * mu_r ** 3. ) / ( mu_tau * ( mi + 1. ) ) ) ** ( 1. / mi )
        #
        #print 'Nr', i_m, 's0i', s0i, 'sV0i', sV0i, 'mu_xi', s0i * gamma(1. + 1. / (1. + mi))
        #
        #Pf = RV( 'uniform', loc = 0.0, scale = 1.0 )
        #w_arr = np.linspace(0, 1.2, 30)
        # loc scale generation for specific CoV
        #CoVtau
        CoV_tau_arr = np.linspace( CoV_tau_range[0], CoV_tau_range[1], dp_tau )
        loc_tau_arr = mu_tau - CoV_tau_arr * mu_tau * 3 ** 0.5
        scale_tau_arr = 2 * mu_tau - 2 * loc_tau_arr
        #CoVr
        CoV_r_arr = np.linspace( CoV_r_range[0], CoV_r_range[1], dp_r )
        loc_r_arr = mu_r - CoV_r_arr * mu_r * 3 ** 0.5
        scale_r_arr = 2 * mu_r - 2 * loc_r_arr
        #shaping for mayavi
        e_arr = orthogonalize( [CoV_tau_arr, CoV_r_arr] )
        x_axis = e_arr[0]
        y_axis = e_arr[1]
        #TAU gen Tuple of [loc,scale]
        stats_tau = []
        for s in range( dp_tau ):
            stats_tau.append( RV( 'uniform', loc = loc_tau_arr[s], scale = scale_tau_arr[s] ) )
        stats_tau[0] = mu_tau
        stats_r = []
        for s in range( dp_r ):
            stats_r.append( RV( 'uniform', loc = loc_r_arr[s], scale = scale_r_arr[s] ) )
        stats_r[0] = mu_r
        #r gen Tuple of [loc,scale]

        sigma_array = np.zeros( ( dp_tau, dp_r ) )
        w_array = np.zeros( ( dp_tau, dp_r ) )
        
        ##grid
        sigma_array_grid = np.zeros( ( dp_tau, dp_r ) )
        w_array_grid = np.zeros( ( dp_tau, dp_r ) )
        for i_tau, taui in enumerate( stats_tau ):
                for i_r, ri in enumerate( stats_r ):
                    total = SPIRRID( q = cb,
                        sampling_type = 'PGrid',
                        evars = dict(),
                        tvars = dict( tau = taui, E_f = E_f, V_f = V_f, r = ri,
                        m = mi, sV0 = sV0i ),
                        n_int = 70 )
                    
                    if isinstance( ri, RV ):
                        r_arr = np.linspace( ri.ppf( 0.001 ), ri.ppf( 0.999 ), 200 )
                        Er = np.trapz( r_arr ** 2 * ri.pdf( r_arr ), r_arr )
                    else:
                        Er = ri ** 2
                    #Optimization  taui, E_f, V_f, ri, mi, sV0i, Pf, Er
                    def spirrid_func( w_in, Er ):
                        w_arr = np.array( w_in )
                        #print 'w', w_arr
                        total.evars = dict( w = w_arr )
                        g = -1.*total.mu_q_arr / Er
                        #print 'res', g
                        total.evars = dict( w = w_arr )
                        return g
                    #w_test = np.linspace(0.001, 1, 1000)
                    #total.evars = dict(w=w_test)
                   # plt.plot(w_test, -1.*total.mu_q_arr / Er)
                    #plt.show()
                    print i_tau, 'von', dp_tau
                    #Optimierung
                    w_ult, sigma_ult, trash1, trash2, trash3 = fmin( spirrid_func, x0 = 0.1, args = [Er], ftol = 0.2, full_output = 1 )
                    sigma_array[i_tau, i_r] = np.float( -1.*sigma_ult )
                    w_array[i_tau, i_r] = np.float( w_ult )
                    
                    #grid
                    w_grid = np.linspace( 0.2, 0.28, 50 )
                    res_grid = -1.* spirrid_func( w_grid, Er )
                    index_max_grid = np.argmax( res_grid )
                    sigma_array_grid[i_tau, i_r] = res_grid[index_max_grid]
                    w_array_grid[i_tau, i_r] = w_grid[index_max_grid]
                    #print w_grid[index_max_grid]
                    
                   

        #print np.max( sigma_array )
        s_dataname = 'sigmaOPT20_with_m{}.npy'.format( mi )
        np.save( s_dataname, sigma_array )
        w_dataname = 'wOPT20_with_m{}.npy'.format( mi )
        np.save( w_dataname, w_array )
        
        #Grid Datasave
        s_gridname = 'sigmaGRID20_with_m{}.npy'.format( mi )
        np.save( s_gridname , sigma_array_grid )
        w_gridname = 'wGRID20_with_m{}.npy'.format( mi )
        np.save( w_gridname, w_array_grid )
        #mayaviplot
        mlab.surf( x_axis, y_axis, w_array )

    mlab.xlabel( "rand tau" )
    mlab.ylabel( "rand r" )
    mlab.zlabel( "sigma" )
    mlab.show()