Esempio n. 1
0
def get_pred(sn, el, ns, set_id, step, compl):
    """read the file for euler angle, total strain and plastic strain fields"""

    f = h5py.File("ref_%s%s_s%s.hdf5" % (ns, set_id, step), 'r')

    print f.get('euler').shape

    euler = f.get('euler')[sn, ...]
    euler = euler.swapaxes(0, 1)

    print euler.shape

    et = np.zeros((el**3, 6))
    ep = np.zeros((el**3, 6))

    for ii in xrange(6):
        comp = compl[ii]
        tmp = f.get('r%s_epsilon_t' % comp)[sn, ...]
        et[:, ii] = tmp.reshape(el**3)

        tmp = f.get('r%s_epsilon_p' % comp)[sn, ...]
        ep[:, ii] = tmp.reshape(el**3)

    f.close()

    epn_max = np.argmax(tensnorm(ep))
    """find the deviatoric strain tensor"""
    print np.all(np.isclose(np.sum(et[:, 0:3]), np.zeros(el**3)))

    et_ = np.zeros(et.shape)
    et_[:,
        0:3] = et[:,
                  0:3] - (1. / 3.) * np.expand_dims(np.sum(et[:, 0:3], 1), 1)
    et_[:, 3:] = et[:, 3:]

    print et_[epn_max, :]

    print np.all(np.isclose(np.sum(et_[:, 0:3]), np.zeros(el**3)))
    """find the norm of the tensors"""
    en = tensnorm(et_)

    print "sn: %s" % sn
    print "min(en): %s" % en.min()
    print "max(en): %s" % en.max()

    epn = tensnorm(ep)
    orig = epn
    """normalize the deviatoric strain tensor"""
    et_n = et_ / np.expand_dims(en, 1)

    print np.all(np.isclose(tensnorm(et_n), np.ones(el**3)))
    """write the normalized deviatioric total strain and plastic strains
    in matrix form"""
    et_m = np.zeros((el**3, 3, 3))
    et_m[:, 0, 0] = et_n[:, 0]
    et_m[:, 1, 1] = et_n[:, 1]
    et_m[:, 2, 2] = et_n[:, 2]
    et_m[:, 0, 1] = et_n[:, 3]
    et_m[:, 1, 0] = et_n[:, 3]
    et_m[:, 0, 2] = et_n[:, 4]
    et_m[:, 2, 0] = et_n[:, 4]
    et_m[:, 1, 2] = et_n[:, 5]
    et_m[:, 2, 1] = et_n[:, 5]

    print epn[epn_max]
    print euler[epn_max, ...]
    print et[epn_max, ...]
    print et_[epn_max, ...]
    print et_n[epn_max, ...]
    """find the eigenvalues of the normalized tensor"""
    eigval, g_p2s = LA.eigh(et_m)
    del et_m
    print eigval[:5, :]
    """find the deformation mode"""
    theta = np.arccos(-np.sqrt(3. / 2.) * eigval[:, 0])

    print "min(theta): %s" % np.str(theta.min() * 180. / np.pi)
    print "mean(theta): %s" % np.str(theta.mean() * 180. / np.pi)
    print "max(theta): %s" % np.str(theta.max() * 180. / np.pi)
    """find g_p2c = g_p2s*g_s2c"""
    g_s2c = ef.bunge2g(euler[:, 0], euler[:, 1], euler[:, 2])
    """this application of einsum is validated vs loop with np.dot()"""
    g_p2c = np.einsum('...ij,...jk', g_s2c, g_p2s)

    phi1, phi, phi2 = ef.g2bunge(g_p2c)

    # X = np.vstack([phi1, phi, phi2]).T
    # X = np.array(ef.g2bunge(g_p2s.swapaxes(1, 2))).T
    # X = np.array(ef.g2bunge(g_p2s)).T
    # X = np.array(ef.g2bunge(g_s2c.swapaxes(1, 2))).T
    # X = np.array(ef.g2bunge(g_s2c)).T
    # X = np.array(ef.g2bunge(g_p2c.swapaxes(1, 2))).T
    X = np.array(ef.g2bunge(g_s2c)).T

    del phi1, phi, phi2

    pred = rr.eval_func(theta, X, en).real

    print "min(orig): %s" % orig.min()
    print "min(pred): %s" % pred.min()
    print "max(orig): %s" % orig.max()
    print "max(pred): %s" % pred.max()

    return orig, pred
n_sym = symop.shape[0]
print "number of symmetry operators: %s" % n_sym

euler_sym = np.zeros((n_sym, n_tot, 3))

g_orig = ef.bunge2g(euler[:, 0], euler[:, 1], euler[:, 2])

# find the symmetric equivalents to the euler angle within the FZ
for sym in xrange(n_sym):
    op = symop[sym, ...]

    # g_sym: array of orientation matrices transformed with a
    # symmetry operator
    g_sym = np.einsum('ik,...kj', op, g_orig)

    tmp = np.array(ef.g2bunge(g_sym)).transpose()

    if sym == 0:
        print "g_sym shape: %s" % str(g_sym.shape)
        print "tmp shape: %s" % str(tmp.shape)

    del g_sym
    euler_sym[sym, ...] = tmp
    del tmp

# make sure all of the euler angles within the appropriate
# ranges (eg. not negative)
print "initial: euler angles less than zero: %s" % np.sum(euler_sym < 0)
lt = euler_sym < 0.0
euler_sym += 2 * np.pi * lt
print "final: euler angles less than zero: %s" % np.sum(euler_sym < 0)
Esempio n. 3
0
def fip(sn, el, ns, set_id, step, typ, compl):

    f = h5py.File("ref_%s%s_s%s.hdf5" % (ns, set_id, step), 'r')

    euler = f.get('euler')[sn, ...].reshape(3, el**3)
    euler = euler.swapaxes(0, 1)

    et = np.zeros((el**3, 6))

    for ii in xrange(6):
        comp = compl[ii]
        tmp = f.get('r%s_%s' % (comp, typ))[sn, ...]
        et[:, ii] = tmp.reshape(el**3)

    f.close()

    """ find the deviatoric strain tensor """
    et_ = et
    et_[:, 0:3] = et_[:, 0:3] - (1./3.)*np.expand_dims(np.sum(et[:, 0:3], 1), 1)

    # print np.all(np.isclose(np.sum(et[:, 0:3]), np.zeros(el**3)))

    """ find the norm of the deviatoric strain tensor """
    en = np.sqrt(np.sum(et_[:, 0:3]**2+2*et_[:, 3:]**2, 1))

    print "sn: %s" % sn
    print "min(en): %s" % en.min()
    print "max(en): %s" % en.max()

    """ normalize the deviatoric strain tensor """
    et_n = et_/np.expand_dims(en, 1)

    # print np.all(np.isclose(np.sqrt(np.sum(et_n[:, 0:3]**2+2*et_n[:, 3:]**2, 1)), np.ones(el**3)))

    et_m = np.zeros((el**3, 3, 3))
    et_m[:, 0, 0] = et_n[:, 0]
    et_m[:, 1, 1] = et_n[:, 1]
    et_m[:, 2, 2] = et_n[:, 2]
    et_m[:, 0, 1] = et_n[:, 3]
    et_m[:, 1, 0] = et_n[:, 3]
    et_m[:, 0, 2] = et_n[:, 4]
    et_m[:, 2, 0] = et_n[:, 4]
    et_m[:, 1, 2] = et_n[:, 5]
    et_m[:, 2, 1] = et_n[:, 5]

    """ find the eigenvalues of the normalized tensor"""
    eigval, g_s2p = LA.eigh(et_m)

    # print eigval[:5, :]

    # """ sort the principal strains in descending order """
    # indx = np.argsort(eigval)
    # indx = indx[::-1]
    # eigval = eigval[indx]

    """ find the deformation mode """
    # theta1 = np.arccos(np.sqrt(3./2.)*eigval[:, 2])+(np.pi/3.)
    # theta2 = np.arccos(np.sqrt(3./2.)*eigval[:, 1])-(np.pi/3.)
    # theta3 = np.arccos(-np.sqrt(3./2.)*eigval[:, 0])
    # print theta1[:10]*(180./np.pi)
    # print theta2[:10]*(180./np.pi)
    # print theta3[:10]*(180./np.pi)

    theta = np.arccos(-np.sqrt(3./2.)*eigval[:, 0])

    print "min(theta): %s" % theta.min()
    print "max(theta): %s" % theta.max()

    """ find g_p2c = g_p2s*g_s2c """

    g_s2c = ef.bunge2g(euler[:, 0], euler[:, 1], euler[:, 2])
    g_p2s = g_s2p.swapaxes(1, 2)
    del g_s2p
    g_p2c = np.einsum('...ik,...kj', g_p2s, g_s2c)
    del g_s2c, g_p2s

    phi1, phi, phi2 = ef.g2bunge(g_p2c)

    X = np.vstack([phi1, phi, phi2]).T
    del phi1, phi, phi2

    fip = rr.eval_func(theta, X, en).real

    print "min(FIP): %s" % fip.min()
    print "max(FIP): %s" % fip.max()

    return fip
def get_pred(sn, el, ns, set_id, step, compl):

    """read the file for euler angle, total strain and plastic strain fields"""

    rcell = np.random.randint(0, el**3)

    f = h5py.File("ref_%s%s_s%s.hdf5" % (ns, set_id, step), 'r')

    print f.get('euler').shape

    euler = f.get('euler')[sn, ...]
    euler = euler.swapaxes(0, 1)

    print euler.shape

    """check to make sure that the Euler manipulations are functioning"""

    # ef.check_euler_op(euler)

    """load et and ep"""

    et = np.zeros((el**3, 6))
    ep = np.zeros((el**3, 6))

    for ii in xrange(6):
        comp = compl[ii]
        tmp = f.get('r%s_epsilon_t' % comp)[sn, ...]
        et[:, ii] = tmp.reshape(el**3)

        tmp = f.get('r%s_epsilon_p' % comp)[sn, ...]
        ep[:, ii] = tmp.reshape(el**3)

    f.close()

    """write et and ep in matrix form"""
    et = tens2mat(et)
    ep = tens2mat(ep)

    print "\net for cell #%s:" % rcell
    print et[rcell, ...]

    """find the deviatoric strain tensor"""
    isdev = np.all(np.abs(thydro(et)) < 1e-5)
    print "\nis hydro(et) == 0?: %s" % isdev

    et_ = np.zeros(et.shape)
    Id = np.zeros(et.shape)
    Id[:, 0, 0] = 1
    Id[:, 1, 1] = 1
    Id[:, 2, 2] = 1
    et_ = et - thydro(et)[:, None, None]*Id

    isdev = np.all(np.abs(thydro(et_)) < 1e-5)
    print "is hydro(et_) == 0?: %s\n" % isdev

    print "\net_ for cell #%s:" % rcell
    print et_[rcell, ...]

    """find the norm of the tensors"""
    en = tensnorm(et_)

    print "\nen for cell #%s: %s" % (rcell, en[rcell])

    print "min(en): %s" % en.min()
    print "max(en): %s" % en.max()

    """normalize the deviatoric strain tensor"""
    et_n = et_/en[:, None, None]

    print "\net_n for cell #%s:" % rcell
    print et_n[rcell, ...]

    isnorm = np.all(np.isclose(tensnorm(et_n), np.ones(el**3)))
    print "is norm(et_n) == 0?: %s\n" % isnorm

    """find the eigenvalues of the normalized tensor"""
    eigval_, g_p2s_ = LA.eigh(et_n)

    print "eigval_ (before sort) for cell #%s: %s" % (rcell, str(eigval_[rcell, :]))
    print "g_p2s_ (before sort) for cell #%s:" % rcell
    print g_p2s_[rcell, ...]

    """sort the eigenvalues/vectors by highest to lowest magnitude
    eigenvalue"""
    esort = np.argsort(np.abs(eigval_))[:, ::-1]

    eigval = np.zeros(eigval_.shape)
    g_p2s = np.zeros(g_p2s_.shape)

    for ii in xrange(el**3):
        eigval[ii, :] = eigval_[ii, esort[ii, :]]
        for jj in xrange(3):
            g_p2s[ii, jj, :] = g_p2s_[ii, jj, esort[ii, :]]

    print "\neigval (after sort) for cell #%s: %s" % (rcell, str(eigval[rcell, :]))
    print "g_p2s (after sort) for cell #%s:\n" % rcell
    print g_p2s[rcell, ...]

    """show that the matrix of eigenvectors is g_p2s"""
    print "use the backwards tensor transformation to " +\
          "get et_n_prinicipal using g_p2s for cell# %s\n" % rcell +\
          "(et_n_principal = g_p2s^t * et_n * g_p2s)"

    tmp = np.dot(np.dot(g_p2s[rcell, ...].T, et_n[rcell, ...]),
                 g_p2s[rcell, ...])
    print np.round(tmp, 6)

    """find the deformation mode"""
    theta = np.arctan2(-2*eigval[:, 0]-eigval[:, 2], np.sqrt(3)*eigval[:, 2])
    theta += np.pi*(theta < 0)

    print "\nmin(theta): %s" % np.str(theta.min()*180./np.pi)
    print "mean(theta): %s" % np.str(theta.mean()*180./np.pi)
    print "max(theta): %s\n" % np.str(theta.max()*180./np.pi)

    """recover the principal values from the deformation mode"""
    print "principal values of et_n recovered from theta for cell #%s:" % rcell
    print theta2et_P(theta[rcell])

    """find g_p2c = g_p2s*g_s2c"""

    g_s2c = ef.bunge2g(euler)

    """this application of einsum is validated vs loop with np.dot()"""
    g_p2c = np.einsum('...ij,...jk', g_s2c, g_p2s)

    tmp = ef.g2bunge(g_p2c)
    euler_p2c = np.zeros((el**3, 3))

    for ii in xrange(el**3):
        euler_p2c[ii, :] = return2fz(tmp[ii, :])

    """try to reconstruct et_"""

    g_p2c_ = ef.bunge2g(euler_p2c)

    print "euler angles for cell#%s: %s" % (rcell, str(euler_p2c[rcell, ...]))

    geq = np.all(np.isclose(g_p2c[rcell, ...], g_p2c_[rcell, ...]))
    print "are g_p2c and g_p2c_ equal for cell #%s?: %s" % (rcell, geq)

    is_equiv = is_equiv_g(g_p2c[rcell, ...], g_p2c_[rcell, ...])
    print "are g_p2c and g_p2c_ equivalent for cell #%s?: %s\n" % (rcell, is_equiv)

    et_n_P = theta2et_P(theta)

    et_n_C = np.einsum('...ij,...jk,...lk', g_p2c_, et_n_P, g_p2c_)

    g_c2s = g_s2c.swapaxes(1, 2)

    et_n_S = np.einsum('...ij,...jk,...lk', g_c2s, et_n_C, g_c2s)

    et_recon = et_n_S * en[:, None, None]

    print "et_ for cell #%s:" % rcell
    print et_[rcell, ...]
    print "et_ reconstructed from theta, euler_p2c and en same cell:"
    print et_recon[rcell, ...]

    # X = np.vstack([phi1, phi, phi2]).T
    # X = np.array(ef.g2bunge(g_p2c)).T
    # X = np.array(ef.g2bunge(g_p2c.swapaxes(1, 2))).T
    # X = np.array(ef.g2bunge(g_p2s)).T
    # X = np.array(ef.g2bunge(g_p2s.swapaxes(1, 2))).T
    # X = np.array(ef.g2bunge(g_s2c)).T
    # X = np.array(ef.g2bunge(g_s2c.swapaxes(1, 2))).T

    orig = tensnorm(ep)
    pred = rr.eval_func(theta, euler_p2c, en).real

    print "\nmin(orig): %s" % orig.min()
    print "min(pred): %s" % pred.min()
    print "max(orig): %s" % orig.max()
    print "max(pred): %s" % pred.max()

    return orig, pred
Esempio n. 5
0
    randloc = np.array([
        2 * np.pi * np.random.rand(), 0.5 * np.pi * np.random.rand(),
        (1. / 3.) * np.pi * np.random.rand()
    ])

    randloc = randloc[:, np.newaxis]

    g = ef.bunge2g(randloc[0], randloc[1], randloc[2])

    tmp = np.zeros([12, 3])

    for ii in xrange(12):
        g_sym = np.dot(symhex[ii, :, :], g[0, ...])
        g_sym = g_sym[np.newaxis, ...]
        tmp[ii, :] = ef.g2bunge(g_sym)

    euler = np.zeros([12, 3])

    euler[:, 0] = tmp[:, 0]
    ltz = euler[:, 0] < 0
    euler[:, 0] = euler[:, 0] + 2 * np.pi * ltz

    euler[:, 1] = tmp[:, 1]
    ltz = euler[:, 1] < 0
    euler[:, 1] = euler[:, 1] + 2 * np.pi * ltz

    euler[:, 2] = tmp[:, 2]
    ltz = euler[:, 2] < 0
    euler[:, 2] = euler[:, 2] + 2 * np.pi * ltz
def get_pred(sn, el, ns, set_id, step, compl):
    """read the file for euler angle, total strain and plastic strain fields"""

    f = h5py.File("ref_%s%s_s%s.hdf5" % (ns, set_id, step), 'r')

    print f.get('euler').shape

    euler = f.get('euler')[sn, ...]
    euler = euler.swapaxes(0, 1)

    print euler.shape

    et = np.zeros((el**3, 6))
    ep = np.zeros((el**3, 6))

    for ii in xrange(6):
        comp = compl[ii]
        tmp = f.get('r%s_epsilon_t' % comp)[sn, ...]
        et[:, ii] = tmp.reshape(el**3)

        tmp = f.get('r%s_epsilon_p' % comp)[sn, ...]
        ep[:, ii] = tmp.reshape(el**3)

    f.close()
    """find the deviatoric strain tensor"""
    isdev = np.all(np.isclose(np.sum(et[:, 0:3]), np.zeros(el**3)))
    print "is trace(et) == 0?: %s" % isdev

    et_ = np.zeros(et.shape)
    et_[:,
        0:3] = et[:,
                  0:3] - (1. / 3.) * np.expand_dims(np.sum(et[:, 0:3], 1), 1)
    et_[:, 3:] = et[:, 3:]

    isdev = np.all(np.isclose(np.sum(et_[:, 0:3]), np.zeros(el**3)))
    print "is trace(et_) == 0?: %s" % isdev
    """find the norm of the tensors"""
    en = tensnorm(et_)

    print "sn: %s" % sn
    print "min(en): %s" % en.min()
    print "max(en): %s" % en.max()
    """normalize the deviatoric strain tensor"""
    et_n = et_ / np.expand_dims(en, 1)

    isnorm = np.all(np.isclose(tensnorm(et_n), np.ones(el**3)))
    print "is norm(et_n) == 0?: %s" % isnorm
    """write the normalized deviatioric total strain and plastic strains
    in matrix form"""
    et_m = tens2mat(et_n)

    epn = tensnorm(ep)
    # epn_max = np.argmax(epn)
    orig = epn
    # print "max(norm(ep)): %s" % epn[epn_max]
    # print "euler @ max(norm(ep)): %s" % str(euler[epn_max, ...])
    # print et[epn_max, ...]
    # print et_[epn_max, ...]
    # print et_n[epn_max, ...]
    """find the eigenvalues of the normalized tensor"""
    eigval_, g_p2s_ = LA.eigh(et_m)
    del et_m

    print "eigval_ example (before sort): %s" % str(eigval_[0, :])
    print "g_p2s_ example (before sort):"
    print g_p2s_[0, ...]
    """sort the eigenvalues/vectors by highest to lowest magnitude
    eigenvalue"""
    esort = np.argsort(np.abs(eigval_))[:, ::-1]

    eigval = np.zeros(eigval_.shape)
    g_p2s = np.zeros(g_p2s_.shape)

    for ii in xrange(el**3):
        eigval[ii, :] = eigval_[ii, esort[ii, :]]
        for jj in xrange(3):
            g_p2s[ii, jj, :] = g_p2s_[ii, jj, esort[ii, :]]

    print "eigval example (after sort): %s" % str(eigval[0, :])
    print "g_p2s example (after sort):"
    print g_p2s[0, ...]
    """find the deformation mode"""
    theta = np.arctan2(-2 * eigval[:, 0] - eigval[:, 2],
                       np.sqrt(3) * eigval[:, 2])
    theta += np.pi * (theta < 0)

    print "min(theta): %s" % np.str(theta.min() * 180. / np.pi)
    print "mean(theta): %s" % np.str(theta.mean() * 180. / np.pi)
    print "max(theta): %s" % np.str(theta.max() * 180. / np.pi)
    """find g_p2c = g_p2s*g_s2c"""
    g_s2c = ef.bunge2g(euler[:, 0], euler[:, 1], euler[:, 2])
    """this application of einsum is validated vs loop with np.dot()"""
    g_p2c = np.einsum('...ij,...jk', g_s2c, g_p2s)

    phi1, phi, phi2 = ef.g2bunge(g_p2c)

    X = np.vstack([phi1, phi, phi2]).T
    # X = np.array(ef.g2bunge(g_p2c)).T
    # X = np.array(ef.g2bunge(g_p2c.swapaxes(1, 2))).T
    # X = np.array(ef.g2bunge(g_p2s)).T
    # X = np.array(ef.g2bunge(g_p2s.swapaxes(1, 2))).T
    # X = np.array(ef.g2bunge(g_s2c)).T
    # X = np.array(ef.g2bunge(g_s2c.swapaxes(1, 2))).T

    del phi1, phi, phi2

    pred = rr.eval_func(theta, X, en).real

    print "min(orig): %s" % orig.min()
    print "min(pred): %s" % pred.min()
    print "max(orig): %s" % orig.max()
    print "max(pred): %s" % pred.max()

    return orig, pred