Esempio n. 1
0
            s2 = s1 - g * 100
            for f in range(s2 // 50 + 1):
                s3 = s2 - f * 50
                for e in range(s3 // 20 + 1):
                    s4 = s3 - e * 20
                    for d in range(s4 // 10 + 1):
                        s5 = s4 - d * 10
                        for c in range(s5 // 5 + 1):
                            s6 = s5 - c * 5
                            for b in range(s6 // 2 + 1):
                                s7 = s6 - b * 2
                                for a in range(s7 + 1):
                                    s8 = s7 - a
                                    if s8 == 0:
                                        r += 1
    return r


# set up problem
problem_url = 'https://projecteuler.net/problem=31'
p = EulerProblem('Coin sums', problem_url, 200)
p.problem = problem
p.date_solved = '2021-02-14'

if __name__ == '__main__':

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 2
0
    # instead of the prime^degree, save it as the prime repeated degree times
    nonprimes_divs3 = []
    primes_used = []
    for i in nonprimes_divs2:
        if i.get('prime') not in primes_used:
            primes_used.append(i.get('prime'))
            nonprimes_divs3 = nonprimes_divs3 + ([i.get('prime')] *
                                                 i.get('degree'))
    # find the product of this list, then divide by the values in primes that also appear in that list
    nonprimes_divs_product = np.product(np.array(nonprimes_divs3))
    for p in primes:
        if p in nonprimes_divs3:
            nonprimes_divs_product = nonprimes_divs_product / p
    return int(np.prod(primes) * nonprimes_divs_product)


# set up problem
problem_url = 'https://projecteuler.net/problem=5'
p = EulerProblem('Smallest multiple', problem_url, 20)
p.problem = problem
p.date_solved = '2021-01-29'

if __name__ == '__main__':
    p.run(10, n=1)
    assert p.solution == 2520, 'Result incorrect'

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 3
0
85786944089552990653640447425576083659976645795096
66024396409905389607120198219976047599490197230297
64913982680032973156037120041377903785566085089252
16730939319872750275468906903707539413042652315011
94809377245048795150954100921645863754710598436791
78639167021187492431995700641917969777599028300699
15368713711936614952811305876380278410754449733078
40789923115535562561142322423255033685442488917353
44889911501440648020369068063960672322193204149535
41503128880339536053299340368006977710650566631954
81234880673210146739058568557934581403627822703280
82616570773948327592232845941706525094512325230608
22918802058777319719839450180888072429661980811197
77158542502016545090413245809786882778948721859617
72107838435069186155435662884062257473692284509516
20849603980134001723930671666823555245252804609722
53503534226472524250874054075591789781264330331690
"""

problem_url = 'https://projecteuler.net/problem=13'
p = EulerProblem('Large sum', problem_url, data)
p.problem = problem
p.date_solved = '2021-02-01'

if __name__ == '__main__':

	# test
	p.run(n=1)

	# get average time
	p.run()
Esempio n. 4
0
from eulertools import EulerProblem
from math import factorial

def problem(args:int) -> int:
	"""Sum up individual terms of a factorial-ed number N.
	"""
	s = [int(x) for x in str(factorial(args))]
	return sum(s)

# set up problem
problem_url = 'https://projecteuler.net/problem=20'
p = EulerProblem('Factorial digit sum', problem_url, 100)
p.problem = problem
p.date_solved = '2021-02-12'

if __name__ == '__main__':
	p.run(10, n=1)
	assert p.solution == 27, 'Result incorrect'

	# test
	p.run(n=1)

	# get average time
	p.run()
Esempio n. 5
0
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
"""

problem_url = 'https://projecteuler.net/problem=11'
p = EulerProblem('Largest product in a grid', problem_url, (4, data))
p.problem = problem
p.date_solved = '2021-01-31'

if __name__ == '__main__':

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 6
0
from eulertools import EulerProblem
import numpy as np


def problem(args: int) -> int:
    """Find A - B where
	A = (sum of i for natural numbers i to limit) ^ 2
	B = (sum of i^2 for natural numbers i to limit)
	"""
    A = (args * (args + 1) / 2)**2
    B = np.dot(np.arange(1, args + 1), np.arange(1, args + 1))
    return int(A - B)


# set up problem
problem_url = 'https://projecteuler.net/problem=6'
p = EulerProblem('Sum square difference', problem_url, 100)
p.problem = problem
p.date_solved = '2021-01-29'

if __name__ == '__main__':
    p.run(10, n=1)
    assert p.solution == 2640, 'Result incorrect'

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 7
0
    sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool)
    for i in range(1, int(n**0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[k * k // 3::2 * k] = False
            sieve[k * (k - 2 * (i & 1) + 4) // 3::2 * k] = False
    return np.r_[2, 3, ((3 * np.nonzero(sieve)[0][1:] + 1) | 1)]


def problem(args: int) -> int:
    """Find the nth prime. Simplified by using bounds on the limit needed to find that prime.
	source: https://en.wikipedia.org/wiki/Prime_number_theorem
	"""
    return sum(prime_list(args))


# set up problem
problem_url = 'https://projecteuler.net/problem=10'
p = EulerProblem('Summation of primes', problem_url, 2000000)
p.problem = problem
p.date_solved = '2021-01-30'

if __name__ == '__main__':
    p.run(10, n=1)
    assert p.solution == 17, 'Result incorrect'

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 8
0
from eulertools import EulerProblem


def problem(args: int) -> int:
    """Find pythagorean triple a, b, c where a + b + c = N
	"""
    for b in range(1, args):
        for a in range(1, b + 1):
            c = args - a - b
            if a**2 + b**2 == c**2 and a < b < c:
                return a * b * c


# set up problem
problem_url = 'https://projecteuler.net/problem=9'
p = EulerProblem('Special Pythagorean triplet', problem_url, 1000)
p.problem = problem
p.date_solved = '2021-01-29'

if __name__ == '__main__':
    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 9
0
from eulertools import EulerProblem
import numpy as np

def problem(args:int) -> int:
	"""Sum of number divisible by 3 and 5. Numbers divisible by both are counted in both, so remove the sum of them..
	"""
	n = np.arange(args)
	n = np.add(1, n)
	x = n[n % 3 == 0]
	y = n[n % 5 == 0]
	z = n[n % (5*3) == 0]
	return sum(x) + sum(y) - sum(z)

# set up problem
problem_url = 'https://projecteuler.net/problem=1'
p = EulerProblem('Multiples of 3 and 5', problem_url, 1000 - 1)
p.problem = problem
p.date_solved = '2021-01-29'

if __name__ == '__main__':
	# test the given input
	p.run(10 - 1, n=1)
	assert p.solution == 23, 'Result incorrect'

	# test
	p.run(n=1)

	# get average time
	p.run()
Esempio n. 10
0
    y = (x % 1000 - x % 100) / 100
    if 1 <= y <= 9:
        n += letter_counts[y] + letter_counts[100]
    return n


def problem(args: int) -> int:
    """Count number of letters when numbers are written out up to N.
	This only works up to N = 1000.
	"""
    s = 0
    for i in range(1, args + 1):
        s += letter_count(i)
    return s


# set up problem
problem_url = 'https://projecteuler.net/problem=17'
p = EulerProblem('Number letter counts', problem_url, 1000)
p.problem = problem
p.date_solved = '2021-02-11'

if __name__ == '__main__':
    p.run(5, n=1)
    assert p.solution == 19, 'Result incorrect'

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 11
0
from eulertools import EulerProblem
from math import log

# fibonacci sequence formula for n digit number
f = lambda n: (n * log(10) + log(5 ** .5)) / log((1 + 5 ** .5) / float(2))

def problem(args:int) -> int:
	"""Finds N-digit Fibonacci number.
	Derived on paper, see here for a similar one: https://blog.dreamshire.com/solutions/project_euler/project-euler-problem-025-solution/
	"""
	return int(f(args - 1)) + 1

# set up problem
problem_url = 'https://projecteuler.net/problem=25'
p = EulerProblem('1000-digit Fibonacci number', problem_url, 1000)
p.problem = problem
p.date_solved = '2021-03-06'

if __name__ == '__main__':
	p.run(3, n=1)
	assert p.solution == 12, 'Result incorrect'

	# test
	p.run(n=1)

	# get average time
	p.run()
Esempio n. 12
0
            return False
        i += 6
    return True


def problem(args: int) -> int:
    """Starting at sqrt of n (the highest limit to search for divisors), search for largest prime that divides n.
	"""
    limit = int(args**.5)
    for i in reversed(range(limit)):
        if args % i == 0:
            if is_prime(i):
                return i


# set up problem
problem_url = 'https://projecteuler.net/problem=3'
p = EulerProblem('Largest prime factor', problem_url, 600851475143)
p.problem = problem
p.date_solved = '2021-01-29'

if __name__ == '__main__':
    # test the given input
    p.run(13195, n=1)
    assert p.solution == 29, 'Result incorrect'

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 13
0
    """Count number of Sundays that occur on first month each year during the 20th century.
	"""
    month_days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
    month_days_leap = [31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
    year = 1901
    day = 366
    r = 0
    for y in range(100):
        adjusted_days = month_days
        if (y + year) % 4 == 0 and (y + year) % 400 != 0:
            adjusted_days = month_days_leap
        if (y + year) % 400 == 0:
            adjusted_days = month_days_leap
        for m in adjusted_days:
            r += 1 if lands_on_weekday(day) == 0 else 0
            day += m
    return r


# set up problem
problem_url = 'https://projecteuler.net/problem=19'
p = EulerProblem('Counting Sundays', problem_url, None)
p.problem = problem
p.date_solved = '2021-02-12'

if __name__ == '__main__':
    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 14
0
    # build list of abundant numbers
    abnts = [i for i in range(1, limit) if sum_proper_divisors(i) > i]
    # create list of flags
    sum_of_abnts = [False] * limit
    # mark elements in the list that are abundant sums
    for a in range(len(abnts) + 1):
        for b in range(a):
            # use a-1 because adjusting for 0 element
            t = abnts[a - 1] + abnts[b]
            if t < limit:
                sum_of_abnts[t] = True
    # sum any element in the list that is false
    for i in range(len(sum_of_abnts)):
        if not sum_of_abnts[i]:
            r += i
    return r


# set up problem
problem_url = 'https://projecteuler.net/problem=23'
p = EulerProblem('Non-abundant sums', problem_url, None)
p.problem = problem
p.date_solved = '2021-03-05'

if __name__ == '__main__':

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 15
0
# set up problem
data = """
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
"""

problem_url = 'https://projecteuler.net/problem=18'
p = EulerProblem('Maximum path sum I', problem_url, data)
p.problem = problem
p.date_solved = '2021-02-12'

if __name__ == '__main__':
	# test
	p.run(n=1)

	# get average time
	p.run()
Esempio n. 16
0
	"""Find sum of amicable numbers up to N.
	"""
	div_list = {}
	r = 0
	# get the divisor sums of values of 1 to N
	for i in range(1, args + 1):
		t = get_divisor_sum(i)
		if 1 < t <= 10000:
			div_list[i] = t
	# for each key (K) in div_list, look for its value (V) in div_list (as a key J)
	# if found, check that J's value W is K and that K != V
	# in symbols, check that dict[J] (= W) == K and dict[K] (= V) == J
	for i in div_list:
		if div_list[i] in div_list:
			if div_list[div_list[i]] == i and div_list[i] != i:
				r += i
	return r

# set up problem
problem_url = 'https://projecteuler.net/problem=21'
p = EulerProblem('Amicable numbers', problem_url, 10000)
p.problem = problem
p.date_solved = '2021-02-13'

if __name__ == '__main__':

	# test
	p.run(n=1)

	# get average time
	p.run()
Esempio n. 17
0
from eulertools import EulerProblem


def problem(args: int) -> int:
    """Sum of digits of 2 ^ N.
	"""
    s = 0
    for i in str(2**args):
        s += int(i)
    return s


# set up problem
problem_url = 'https://projecteuler.net/problem=16'
p = EulerProblem('Power digit sum', problem_url, 1000)
p.problem = problem
p.date_solved = '2021-02-10'

if __name__ == '__main__':
    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 18
0
            sieve[k * (k - 2 * (i & 1) + 4) // 3::2 * k] = False
    return np.r_[2, 3, ((3 * np.nonzero(sieve)[0][1:] + 1) | 1)]


def problem(args: int) -> int:
    """Find the nth prime. Simplified by using bounds on the limit needed to find that prime.
	source: https://en.wikipedia.org/wiki/Prime_number_theorem
	"""
    limit = int(args * log(args) + args * log(log(args)) + 1)
    primes = prime_list(limit)
    if len(primes) >= args:
        return primes[args - 1]
    else:
        return -1


# set up problem
problem_url = 'https://projecteuler.net/problem=7'
p = EulerProblem('10001st prime', problem_url, 10001)
p.problem = problem
p.date_solved = '2021-01-29'

if __name__ == '__main__':
    p.run(6, n=1)
    assert p.solution == 13, 'Result incorrect'

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 19
0
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
"""

problem_url = 'https://projecteuler.net/problem=8'
p = EulerProblem('Largest product in a series', problem_url, (13, data))
p.problem = problem
p.date_solved = '2021-01-29'

if __name__ == '__main__':
    p.run([4, data], n=1)
    assert p.solution == 5832, 'Result incorrect'

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 20
0
from eulertools import EulerProblem
from scipy.special import comb


def problem(args: int) -> int:
    """Find number of paths on a grid N x N from top left to bottom right.
	Can only move down or right.
	Solution uses nCr (n Choose r) because the total path length is always N x 2
	and there are always N moves down and N moves right.
	So, nCr finds number of ways r objects can be chosen from n total.
	"""
    return comb(args * 2, args, exact=True)


# set up problem
problem_url = 'https://projecteuler.net/problem=15'
p = EulerProblem('Lattice paths', problem_url, 20)
p.problem = problem
p.date_solved = '2021-02-10'

if __name__ == '__main__':
    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 21
0
	- Min of values to search through: 902 * 902.
	 - 902 is the smallest integer > 900 divisible by 11. Since the largest palindrome contains at least 1 number divisible by 11, this lower bound makes sense. 
	"""

    x = 999
    y = 990  # largest value < 1000 divisible by 11
    # search for palindrome
    while not is_palindrome(x * y) and x != 902:
        y -= 1  # decrement y until it reaches 902
        # if y gets to 902, reset y then decrement x
        if y == 902:
            y = 990
            x -= 1
    return x * y


# set up problem
problem_url = 'https://projecteuler.net/problem=4'
p = EulerProblem('Largest palindrome product', problem_url, None)
p.problem = problem
p.date_solved = '2021-01-29'

if __name__ == '__main__':
    assert is_palindrome(250052), '1. Result incorrect'
    assert not is_palindrome(15), '2. Result incorrect'

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 22
0
def problem(args: int) -> int:
    """Create a fibonacci sequence up to a given limit. Take the sum of any even terms.
	"""
    a, b, c = 1, 2, 0
    result = [a]
    while c <= args:
        c = a + b
        a = b
        b = c
        result.append(a)
    result = np.array(result)
    return sum(result[result % 2 == 0])


# set up problem
problem_url = 'https://projecteuler.net/problem=2'
p = EulerProblem('Even Fibonacci numbers', problem_url, 4000000 - 1)
p.problem = problem
p.date_solved = '2021-01-29'

if __name__ == '__main__':
    # test the given input
    p.run(89, n=1)
    check = np.array([1, 2, 3, 5, 8, 13, 21, 34, 55, 89])
    assert p.solution == sum(check[check % 2 == 0]), 'Result incorrect'

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 23
0
            # determine number of times p can divide y, y/p, y/p/p, etc.
            # this finds power of the prime divisor
            exp = 1
            while y % p == 0:
                exp += 1
                y = y / p
            if exp > 1:
                Dy = Dy * exp
            if y == 1:
                break
        ndivs = Dx * Dy
        Dx = Dy
        n += 1
    return tri(n - 2)


# set up problem
problem_url = 'https://projecteuler.net/problem=12'
p = EulerProblem('Highly divisible triangular number', problem_url, 500)
p.problem = problem
p.date_solved = '2021-02-09'

if __name__ == '__main__':
    p.run(5, n=1)
    assert p.solution == 28, 'Result incorrect'

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 24
0
        c = 1  # keep track of length
        while j != 1:
            if j in lens:
                # subtract 1 since current value is j
                # when j was calculated before, it included itself
                # as part of the chain length
                c += lens[j] - 1
                break
            c += 1
            j = j // 2 if j % 2 == 0 else 3 * j + 1
        maxlen = max(c, maxlen)
        r = i if maxlen == c else r
        # save the chain lengths
        if i not in lens:
            lens[i] = c
        i += 1
    return r


# set up problem
problem_url = 'https://projecteuler.net/problem=14'
p = EulerProblem('Longest Collatz sequence', problem_url, 1000000)
p.problem = problem
p.date_solved = '2021-02-10'

if __name__ == '__main__':
    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 25
0
        # number of possible unique combinations after fixing the first element
        p = factorial(len(remaining) - 1)
        # count the number of possible combinations
        # stop when we have gone over the target
        while s <= limit and c < 10:
            s += p
            c += 1
        # since s and c have been incremented, need to decrement for
        # the actual answer
        r += str(remaining[c - 1])
        remaining.pop(c - 1)
        position = s - p
    r += str(remaining[0])
    return r


# set up problem
problem_url = 'https://projecteuler.net/problem=24'
p = EulerProblem('Lexicographic permutations', problem_url, (1000000, 9))
p.problem = problem
p.date_solved = '2021-03-05'

if __name__ == '__main__':
    p.run((6, 2), n=1)
    assert p.solution == '210', 'Result incorrect'

    # test
    p.run(n=1)

    # get average time
    p.run()
Esempio n. 26
0
        t += ord(s[i]) - 64
    return t


def problem(args: str) -> int:
    """For each word given, score it, and return the total sum of all scores.
	"""
    r = 0
    data = read_data(args)
    for i in range(len(data)):
        r += (i + 1) * score(data[i])
    return r


# set up problem
data_url = 'https://projecteuler.net/project/resources/p022_names.txt'
data = get(data_url).text

problem_url = 'https://projecteuler.net/problem=22'
p = EulerProblem('Names scores', problem_url, data)
p.problem = problem
p.date_solved = '2021-02-13'

if __name__ == '__main__':
    assert score('COLIN') == 53, 'Result incorrect'

    # test
    p.run(n=1)

    # get average time
    p.run()