def phi1(x): #phi function implenment 1 if isprime(x): return x-1 count = 0 for i in xrange(x): if gcd(i,x) == 1: count += 1 return count
def findorderfractions2(x,a,b,c,d): lb = x*a/b+1 ub = x*c/d if isprime(x): return ub-lb+1 res = [1 for i in xrange(lb,ub+1) if gcd(i,x) == 1] return len(res)
def nextCN(n): p0 = nextC(n,0,1) a0 = p0[0] n0,d0 = a0,1 yield n0,d0 p1 = nextC(*p0[1:]) a1 = p1[0] n1,d1 = a1*a0+1,a1 g = gcd(n1,d1) n1,d1 = n1/g,d1/g yield n1,d1 while True: p2 = nextC(*p1[1:]) p1,p0 = p2,p1 n2 = p2[0]*n1+n0 d2 = p2[0]*d1+d0 g = gcd(n2,d2) n2,d2 = n2/g,d2/g d1,d0 = d2,d1 n1,n0 = n2,n1 yield n2,d2
import eulerutils as eu count = 0 for i in (1,9999998): if(i % 1000 == 0): print "Count i: %i" % (i) for j in (i, 9999999): k = 10000000 - (i + j) if 1 == eu.gcd(i, j) and 1 == eu.gcd(j, k) and 1 == eu.gcd(i,k): print "Found primitive: %i, %i, %i" % (i,j,k) count += 1 print "Count: %i" % count
import eulerutils as eu count = 0 for i in (1, 9999998): if (i % 1000 == 0): print "Count i: %i" % (i) for j in (i, 9999999): k = 10000000 - (i + j) if 1 == eu.gcd(i, j) and 1 == eu.gcd(j, k) and 1 == eu.gcd(i, k): print "Found primitive: %i, %i, %i" % (i, j, k) count += 1 print "Count: %i" % count