Esempio n. 1
0
    def test_check_spatial_components(self):

        A = AnalysisSystem([
            TestAnalysisSystem.FirstDummyComponent(),
            TestAnalysisSystem.SecondDummyComponent()
        ], 'B', 'C')
        self.assertEqual(None, A.check_spatial_components())

        A = AnalysisSystem([
            TestAnalysisSystem.SecondDummyComponent(),
            SpatialComponent('A', 'B'),
            SpatialComponent('C', 'D')
        ], 'E', 'F')
        self.assertEqual(None, A.check_spatial_components())

        A = AnalysisSystem([
            TestAnalysisSystem.FirstDummyComponent(),
            TestAnalysisSystem.SecondDummyComponent(),
            SpatialComponent('A', 'B')
        ], 'C', 'D')
        self.assertEqual(2, A.check_spatial_components())

        A = AnalysisSystem([
            SpatialComponent('A', 'B'),
            TestAnalysisSystem.FirstDummyComponent(),
            TestAnalysisSystem.SecondDummyComponent()
        ], 'C', 'D')
        self.assertEqual(0, A.check_spatial_components())
Esempio n. 2
0
    def test_mini_world_geography_based_mock_data(self):
        """Testing on a simple mock data file, with mock covariate values"""

        # GENERATING OBSERVATIONS
        # Simulated locations: they will exactly sits on the grid points of the covariate datafile
        locations = numpy.array([[0.0, 0.0], [0.0, 0.5], [0.05, 0.0]])

        # Simulated measurements: simple linear relation of type: y = 2*x
        measurement = numpy.array([2., 2., 2.])

        # Simulated errors
        uncorrelatederror = 0.1 * numpy.ones(measurement.shape)

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(locations, measurement,
                                                      uncorrelatederror)

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        # GENERATING THE MODEL
        # Local component
        geography_covariate_element = GeographyBasedElement(
            self.covariate_file.name, 'lat', 'lon', 'covariate', 1.0)
        geography_covariate_element.load()
        geography_based_component = SpatialComponent(
            ComponentStorage_InMemory(
                geography_covariate_element,
                CovariateHyperparameters(-0.5 * numpy.log(10.))),
            SpatialComponentSolutionStorage_InMemory())

        # GENERATING THE ANALYSIS
        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([geography_based_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()

        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(2., statevector[0], delta=0.3)

        # Also check entire state vector within outer bounds set by obs
        self.assertTrue(all(statevector < 2.0))

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(
            0, locations, None, None)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        numpy.testing.assert_almost_equal(
            statevector[0] * numpy.ones(len(measurement)), result)
Esempio n. 3
0
    def __init__(self,
                 storage_climatology,
                 storage_large_scale,
                 storage_local,
                 covariates_descriptor,
                 insitu_biases=False,
                 breakpoints_file=None,
                 global_biases=False,
                 global_biases_group_list=[],
                 compute_uncertainties=False,
                 method='EXACT',
                 compute_sample=False,
                 sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3],
                 compute_prior_sample=False):

        super(AnalysisSystem_EUSTACE,
              self).__init__(components=[
                  SpaceTimeComponent(
                      ClimatologyDefinition(covariates_descriptor),
                      storage_climatology, True, compute_uncertainties, method,
                      compute_sample, sample_size, compute_prior_sample),
                  SpaceTimeComponent(
                      LargeScaleDefinition(insitu_biases, breakpoints_file),
                      storage_large_scale, True, compute_uncertainties, method,
                      compute_sample, sample_size, compute_prior_sample),
                  SpatialComponent(
                      LocalDefinition(global_biases, global_biases_group_list),
                      storage_local, compute_uncertainties, method,
                      compute_sample, sample_size, compute_prior_sample)
              ],
                             observable=ObservationSource.TMEAN)
Esempio n. 4
0
    def test_mini_world_local(self):

        # Local component
        local_component = SpatialComponent(
            ComponentStorage_InMemory(
                LocalElement(n_triangulation_divisions=1),
                LocalHyperparameters(log_sigma=0.0, log_rho=numpy.log(1.0))),
            SpatialComponentSolutionStorage_InMemory(),
            compute_uncertainties=True,
            method='APPROXIMATED')

        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([local_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader()

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()
        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(20.0, statevector[12], delta=0.3)
        self.assertAlmostEqual(-15.0, statevector[17], delta=0.3)
        self.assertAlmostEqual(5.0, statevector[41], delta=0.3)

        # Also check entire state vector within outer bounds set by obs
        self.assertTrue(all(statevector < 20.0))
        self.assertTrue(all(statevector > -15.0))

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(0)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        numpy.testing.assert_almost_equal(statevector[[12, 17, 41]], result)

        # test output gridding, pointwise limit
        outputstructure = OutputRectilinearGridStructure(
            2,
            epoch_plus_days(2),
            latitudes=numpy.linspace(-89.875, 89.875, num=10),
            longitudes=numpy.linspace(-179.875, 179.875, num=20))
        pointwise_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        pointwise_limit_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1, 1], 3)
        numpy.testing.assert_array_almost_equal(pointwise_result,
                                                pointwise_limit_result)
Esempio n. 5
0
    def __init__(self):

        # Build analysis system by referencing the global variables
        # In distributed computing we would construct these using classes that load from file

        super(AnalysisSystem_HadCRUT4_InMemory,
              self).__init__(components=[
                  SpaceTimeComponent(HadCRUT4_InMemory.definition_climatology,
                                     HadCRUT4_InMemory.solution_climatology),
                  SpaceTimeComponent(HadCRUT4_InMemory.definition_large_scale,
                                     HadCRUT4_InMemory.solution_large_scale),
                  SpatialComponent(HadCRUT4_InMemory.definition_local,
                                   HadCRUT4_InMemory.solution_local)
              ],
                             observable=ObservationSource.TMEAN)
Esempio n. 6
0
    def __init__(self,
                 storage_climatology,
                 storage_large_scale,
                 storage_local_bias,
                 storage_region_spde,
                 covariates_descriptor,
                 insitu_biases=False,
                 breakpoints_file=None,
                 global_biases=False,
                 global_biases_group_list=[],
                 compute_uncertainties=False,
                 method='EXACT',
                 compute_sample=False,
                 sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3],
                 neighbourhood_level=0,
                 region_index=0,
                 regionspec='LocalSubRegion'):

        # initialise the OptimizationSystem
        super(RegionOptimizationSystem_EUSTACE,
              self).__init__(components=[
                  SpaceTimeComponent(
                      ClimatologyDefinition(covariates_descriptor),
                      storage_climatology, True, compute_uncertainties, method,
                      compute_sample, sample_size),
                  SpaceTimeComponent(
                      LargeScaleDefinition(insitu_biases, breakpoints_file),
                      storage_large_scale, True, compute_uncertainties, method,
                      compute_sample, sample_size),
                  SpatialComponent(
                      PureBiasComponentDefinition(global_biases,
                                                  global_biases_group_list),
                      storage_local_bias, compute_uncertainties, method,
                      compute_sample, sample_size),
                  DelayedSpatialComponent(
                      LocalViewDefinition(neighbourhood_level, region_index,
                                          regionspec), storage_region_spde,
                      compute_uncertainties, method, compute_sample,
                      sample_size)
              ],
                             observable=ObservationSource.TMEAN)
Esempio n. 7
0
def mini_world_spatial():

    # Local component
    local_component = SpatialComponent(ComponentStorage_InMemory(LocalElement(n_triangulation_divisions=4),
                                        LocalHyperparameters(log_sigma=numpy.log(5.0), log_rho=numpy.log( 15. * numpy.pi / 180. )  )),
                                        SpatialComponentSolutionStorage_InMemory(), compute_uncertainties=False, method='APPROXIMATED', compute_sample = True, sample_size=100)

    # Analysis system using the specified components, for the Tmean observable
    analysis_system = AnalysisSystem([ local_component ], ObservationSource.TMEAN, log=StringIO())
    
    # Simulated inputs
    simulated_input_loader = SimulatedInputLoader()

    # Simulate evaluation of this time index
    simulated_time_indices = [ 0 ]

    # Update with data
    analysis_system.update([ simulated_input_loader ], simulated_time_indices)

    # Check state vector directly
    statevector = analysis_system.components[0].solutionstorage.partial_state_read(0)

    return analysis_system, statevector
Esempio n. 8
0
    def test_process_observations(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 10.0  3.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [  3.0 10.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  24.5   -47.85 ] x = [ -102.0 ]
        # [ -47.85  202.86 ]     [  397.1 ]
        #
        # => x = [ -0.63067268 ]
        #        [  1.80874649 ]
        #

        # Input data
        test_offset = numpy.array([2.0, 3.0])
        test_obs = TestSpatialComponentSolution.TestObservations()

        # Make component and check it's of the correct class
        c = SpatialComponent(
            ComponentStorage_InMemory(
                TestSpatialComponentSolution.TestElement(),
                CovariateHyperparameters(-0.5 * numpy.log(2.0))),
            SpatialComponentSolutionStorage_InMemory())
        s = c.component_solution()
        self.assertIsInstance(s, SpatialComponentSolution)
        self.assertFalse(s.compute_uncertainties)
        self.assertFalse(s.compute_sample)

        # Do the processing
        s.process_observations(test_obs, test_offset)
        s.update_time_step()

        # Should be the value of x (see matrices in comment above)
        numpy.testing.assert_almost_equal(
            s.solutionstorage.partial_state_read(21),
            numpy.array([[-0.63067268], [1.80874649]]))

        # Should be the value of x multiplied by the design matrix
        numpy.testing.assert_almost_equal(
            s.solution_observation_expected_value(
                TestSpatialComponentSolution.TestObservations()),
            numpy.array([[-1.5 * -0.63067268 + 2.2 * 1.80874649],
                         [3.3 * 1.80874649]]))

        # This should be zero as we have no information for other times
        numpy.testing.assert_almost_equal(
            s.solution_observation_expected_value(
                TestSpatialComponentSolution.TestSomeOtherTime()),
            numpy.zeros((7, )))

        # In this case we did not allowed the computation of uncertainties or samples, hence the state of marginal variances should be None, while the expected uncertainties zero
        self.assertEqual(s.solutionstorage.partial_state_marginal_std_read(21),
                         None)
        self.assertEqual(s.solutionstorage.state_marginal_std_at_time, {})
        numpy.testing.assert_almost_equal(
            s.solution_observation_expected_uncertainties(
                TestSpatialComponentSolution.TestObservations()), 0.)

        self.assertEqual(s.solutionstorage.partial_state_sample_read(21), None)
        self.assertEqual(s.solutionstorage.state_sample_at_time, {})
        numpy.testing.assert_almost_equal(
            s.solution_observation_projected_sample(
                TestSpatialComponentSolution.TestObservations()), 0.)
Esempio n. 9
0
    def test_process_observations_compute_sample(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 10.0  3.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [  3.0 10.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  24.5   -47.85 ] x = [ -102.0 ]
        # [ -47.85  202.86 ]     [  397.1 ]
        #
        # => x = [ -0.63067268 ]
        #        [  1.80874649 ]
        #

        # Input data
        test_offset = numpy.array([2.0, 3.0])
        test_obs = TestSpatialComponentSolution.TestObservations()
        sample_size = 300

        # Make component and check it's of the correct class
        c = SpatialComponent(ComponentStorage_InMemory(
            TestSpatialComponentSolution.TestElement(),
            CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                             SpatialComponentSolutionStorage_InMemory(),
                             compute_sample=True,
                             sample_size=sample_size)
        s = c.component_solution()
        self.assertIsInstance(s, SpatialComponentSolution)
        self.assertFalse(s.compute_uncertainties)
        self.assertTrue(s.compute_sample)

        # Do the processing
        s.process_observations(test_obs, test_offset)
        numpy.random.seed(0)
        s.update_time_step()
        computed_sample = s.solutionstorage.partial_state_sample_read(21)
        self.assertEqual((2, sample_size), computed_sample.shape)

        numpy.random.seed(0)
        variate = scipy.random.normal(0.0, 1.0, (2, sample_size))

        expected_posterior_precision = numpy.array([[24.5, -47.85],
                                                    [-47.85, 202.86]])

        self.assertEqual(len(s.solutionstorage.state_sample_at_time), 1)
        self.assertListEqual(s.solutionstorage.state_sample_at_time.keys(),
                             [21])
        # check result
        numpy.testing.assert_almost_equal(
            numpy.dot(variate.T, variate),
            numpy.dot(computed_sample.T,
                      numpy.dot(expected_posterior_precision,
                                computed_sample)))

        # In this case we did not allowed the computation of uncertainties
        self.assertEqual(s.solutionstorage.partial_state_marginal_std_read(21),
                         None)
        self.assertEqual(s.solutionstorage.state_marginal_std_at_time, {})
        numpy.testing.assert_almost_equal(
            s.solution_observation_expected_uncertainties(
                TestSpatialComponentSolution.TestObservations()), 0.)
Esempio n. 10
0
    def test_process_observations_compute_uncertainties(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 10.0  3.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [  3.0 10.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  24.5   -47.85 ] x = [ -102.0 ]
        # [ -47.85  202.86 ]     [  397.1 ]
        #
        # => x = [ -0.63067268 ]
        #        [  1.80874649 ]
        #

        # Input data
        test_offset = numpy.array([2.0, 3.0])
        test_obs = TestSpatialComponentSolution.TestObservations()

        # Make component and check it's of the correct class
        c = SpatialComponent(ComponentStorage_InMemory(
            TestSpatialComponentSolution.TestElement(),
            CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                             SpatialComponentSolutionStorage_InMemory(),
                             compute_uncertainties=True,
                             sample_size=666)
        s = c.component_solution()
        self.assertIsInstance(s, SpatialComponentSolution)
        self.assertTrue(s.compute_uncertainties)
        self.assertFalse(s.compute_sample)

        # Do the processing
        s.process_observations(test_obs, test_offset)
        s.update_time_step()

        # In this case we are considering the last iteration of model solving, hence marginal variances should have been stored
        expected_marginal_std = numpy.sqrt(
            numpy.diag(
                numpy.linalg.inv(
                    numpy.array([[24.5, -47.85], [-47.85, 202.86]]))))
        numpy.testing.assert_array_almost_equal(
            s.solutionstorage.partial_state_marginal_std_read(21),
            expected_marginal_std)
        self.assertEqual(len(s.solutionstorage.state_marginal_std_at_time), 1)
        self.assertListEqual(
            s.solutionstorage.state_marginal_std_at_time.keys(), [21])

        # We also test the computation of prior marginal variances, and their projection onto observations

        expected_prior_std = numpy.sqrt(
            numpy.diag(numpy.linalg.inv(numpy.array([[2., 0.], [0., 2.]]))))
        numpy.testing.assert_array_almost_equal(s.solution_prior_std(100),
                                                expected_prior_std,
                                                decimal=1)
        numpy.testing.assert_array_almost_equal(s.solution_prior_std(10000),
                                                expected_prior_std,
                                                decimal=2)

        design_matrix = numpy.array([[-1.5, 2.2], [0.0, 3.3]])
        expected_prior_std_projection = numpy.dot(design_matrix,
                                                  expected_prior_std)
        numpy.testing.assert_array_almost_equal(
            s.solution_observation_prior_uncertainties(None),
            expected_prior_std_projection,
            decimal=1)

        # In this case we did not allowed the computation of uncertainties samples
        self.assertEqual(s.solutionstorage.partial_state_sample_read(21), None)
        self.assertEqual(s.solutionstorage.state_sample_at_time, {})
        numpy.testing.assert_almost_equal(
            s.solution_observation_projected_sample(
                TestSpatialComponentSolution.TestObservations()), 0.)
        self.assertEqual(
            666,
            s.solution_observation_projected_sample(
                TestSpatialComponentSolution.TestObservations()).shape[1])
Esempio n. 11
0
def main():

    print 'Advanced standard example using a few days of EUSTACE data'
    parser = argparse.ArgumentParser(description='Advanced standard example using a few days of EUSTACE data')
    parser.add_argument('outpath', help='directory where the output should be redirected')
    parser.add_argument('--json_descriptor', default = None, help='a json descriptor containing the covariates to include in the climatology model')
    parser.add_argument('--land_biases', action='store_true', help='include insitu land homogenization bias terms')
    parser.add_argument('--global_biases', action='store_true', help='include global satellite bias terms')
    parser.add_argument('--n_iterations', type=int, default=5, help='number of solving iterations')
    args = parser.parse_args()

    # Input data path
    basepath = os.path.join('/work/scratch/eustace/rawbinary3')

    # Days to process
    time_indices = range(int(days_since_epoch(datetime(2006, 2, 1))), int(days_since_epoch(datetime(2006, 2, 2))))

    # Sources to use
    sources = [ 'surfaceairmodel_land', 'surfaceairmodel_ocean', 'surfaceairmodel_ice', 'insitu_land', 'insitu_ocean' ]    

    #SETUP
    # setup for the seasonal core: climatology covariates setup read from file
    seasonal_setup = {'n_triangulation_divisions':5,
		      'n_harmonics':4,
		      'n_spatial_components':6,
		      'amplitude':2.,
		      'space_length_scale':5., # length scale in units of degrees
		     }
    grandmean_amplitude = 15.0
    
    # setup for the large scale component
    spacetime_setup = {'n_triangulation_divisions':2,
		       'alpha':2,
		       'starttime':0,
		       'endtime':10.,
		       'n_nodes':2,
		       'overlap_factor':2.5,
		       'H':1,
		       'amplitude':1.,
		       'space_lenght_scale':15.0, # length scale in units of degrees
		       'time_length_scale':15.0   # length scal in units of days
		      }
    bias_amplitude = .9

    # setup for the local component
    local_setup = {'n_triangulation_divisions':6,
                   'amplitude':2.,
                   'space_length_scale':2. # length scale in units of degrees
                  }
    globalbias_amplitude = 15.0

    # CLIMATOLOGY COMPONENT: combining the seasonal core along with latitude harmonics, altitude and coastal effects    
    if args.json_descriptor is not None:
      loader = LoadCovariateElement(args.json_descriptor)
      loader.check_keys()
      covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters()
      print('The following fields have been added as covariates of the climatology model')
      print(loader.data.keys())
    else:
      covariate_elements, covariate_hyperparameters = [], []

    climatology_element = CombinationElement( [SeasonalElement(n_triangulation_divisions=seasonal_setup['n_triangulation_divisions'], 
							       n_harmonics=seasonal_setup['n_harmonics'], 
							       include_local_mean=True), 
					       GrandMeanElement()]+covariate_elements)       
    climatology_hyperparameters = CombinationHyperparameters( [SeasonalHyperparameters(n_spatial_components=seasonal_setup['n_spatial_components'], 
										       common_log_sigma=numpy.log(seasonal_setup['amplitude']), 
										       common_log_rho=numpy.log(numpy.radians(seasonal_setup['space_length_scale']))), 
							       CovariateHyperparameters(numpy.log(grandmean_amplitude))] + covariate_hyperparameters )
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(climatology_element, climatology_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                         compute_uncertainties=True, method='APPROXIMATED',
                                                                         compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # LARGE SCALE (kronecker product) COMPONENT: combining large scale trends with bias terms accounting for homogeneization effects    
    if args.land_biases:
	bias_element, bias_hyperparameters = [InsituLandBiasElement(BREAKPOINTS_FILE)], [CovariateHyperparameters(numpy.log(bias_amplitude))]
	print('Adding bias terms for insitu land homogenization')
    else:
	bias_element, bias_hyperparameters = [], []

    large_scale_element = CombinationElement( [SpaceTimeKroneckerElement(n_triangulation_divisions=spacetime_setup['n_triangulation_divisions'], 
                                                                         alpha=spacetime_setup['alpha'], 
                                                                         starttime=spacetime_setup['starttime'], 
                                                                         endtime=spacetime_setup['endtime'], 
                                                                         n_nodes=spacetime_setup['n_nodes'], 
                                                                         overlap_factor=spacetime_setup['overlap_factor'], 
                                                                         H=spacetime_setup['H'])] + bias_element)
    large_scale_hyperparameters = CombinationHyperparameters( [SpaceTimeSPDEHyperparameters(space_log_sigma=numpy.log(spacetime_setup['amplitude']),
                                                                                            space_log_rho=numpy.log(numpy.radians(spacetime_setup['space_lenght_scale'])), 
                                                                                            time_log_rho=numpy.log(spacetime_setup['time_length_scale']))] + bias_hyperparameters) 
    large_scale_component =  SpaceTimeComponent(ComponentStorage_InMemory(large_scale_element, large_scale_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                          compute_uncertainties=True, method='APPROXIMATED',
                                                                          compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])
                                 
    # LOCAL COMPONENT: combining local scale variations with global satellite bias terms    
    if args.global_biases:
	bias_elements = [BiasElement(groupname, 1) for groupname in GLOBAL_BIASES_GROUP_LIST]
	bias_hyperparameters = [CovariateHyperparameters(numpy.log(globalbias_amplitude)) for index in range(len(GLOBAL_BIASES_GROUP_LIST))]
	print('Adding global bias terms for all the surfaces')
    else:
	bias_elements, bias_hyperparameters = [], []

    local_scale_element = CombinationElement([LocalElement(n_triangulation_divisions=local_setup['n_triangulation_divisions'])] + bias_elements)
    local_scale_hyperparameters = CombinationHyperparameters([LocalHyperparameters(log_sigma=numpy.log(local_setup['amplitude']), 
                                                                                   log_rho=numpy.log(numpy.radians(local_setup['space_length_scale'])))] + bias_hyperparameters)
    local_component = SpatialComponent(ComponentStorage_InMemory(local_scale_element, local_scale_hyperparameters), SpatialComponentSolutionStorage_InMemory(), 
                                                                 compute_uncertainties=True, method='APPROXIMATED',
                                                                 compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # Analysis system using the specified components, for the Tmean observable
    print 'Analysing inputs'

    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Object to load raw binary inputs at time indices
    inputloaders = [ AnalysisSystemInputLoaderRawBinary_Sources(basepath, source, time_indices) for source in sources ]

    for iteration in range(args.n_iterations):
	
	message = 'Iteration {}'.format(iteration)
	print(message)
	
	# Update with data
	analysis_system.update(inputloaders, time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Get date for output
        outputdate = inputloaders[0].datetime_at_time_index(time_index)
        print 'Evaluating output grid: ', outputdate

        #Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-90.+definitions.GLOBAL_FIELD_RESOLUTION/2., 90.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[1]),
            longitudes=numpy.linspace(-180.+definitions.GLOBAL_FIELD_RESOLUTION/2., 180.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[2]))

        # Evaluate expected value at these locations
        for field in ['MAP', 'post_STD']:
	  print 'Evaluating: ',field
	  result_expected_value = analysis_system.evaluate_expected_value('MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  result_expected_uncertainties = analysis_system.evaluate_expected_value('post_STD', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  
	print 'Evaluating: climatology fraction'
	climatology_fraction = analysis_system.evaluate_climatology_fraction(outputstructure, [1,1], 1000)

	print 'Evaluating: the sample'
	sample = analysis_system.evaluate_projected_sample(outputstructure)

	# Make output filename
        pathname = 'eustace_example_output_{0:04d}{1:02d}{2:02d}.nc'.format(outputdate.year, outputdate.month, outputdate.day)
	pathname = os.path.join(args.outpath, pathname)
        print 'Saving: ', pathname

        # Save results
        filebuilder = FileBuilderGlobalField(
            pathname, 
            time_index,
            'Infilling Example',
            'UNVERSIONED',
            definitions.TAS.name,
            '',
            'Example data only',
            'eustace.analysis.advanced_standard.examples.example_eustace_few_days', 
            '')
        filebuilder.add_global_field(definitions.TAS, result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TASUNCERTAINTY, result_expected_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TAS_CLIMATOLOGY_FRACTION, climatology_fraction.reshape(definitions.GLOBAL_FIELD_SHAPE))

	for index in range(definitions.GLOBAL_SAMPLE_SHAPE[3]):
	  variable = copy.deepcopy(definitions.TASENSEMBLE)
	  variable.name = variable.name + '_' + str(index)
	  selected_sample = sample[:,index].ravel()+result_expected_value
	  filebuilder.add_global_field(variable, selected_sample.reshape(definitions.GLOBAL_FIELD_SHAPE))
	  
	filebuilder.save_and_close()

    print 'Complete'
Esempio n. 12
0
    def test_mini_world_altitude_with_latitude(self):
        """Testing using altitude as a covariate"""

        # GENERATING OBSERVATIONS
        # Simulated locations: they will exactly sits on the grid points of the covariate datafile
        DEM = Dataset(self.altitude_datafile)
        latitude = DEM.variables['lat'][:]
        longitude = DEM.variables['lon'][:]
        altitude = DEM.variables['dem'][:]

        indices = numpy.stack(
            (numpy.array([1, 3, 5, 7, 8, 9, 10, 11
                          ]), numpy.array([0, 0, 0, 0, 0, 0, 0, 0])),
            axis=1)

        selected_location = []
        altitude_observations = []
        for couple in indices:
            selected_location.append([
                latitude[couple[0], couple[1]], longitude[couple[0], couple[1]]
            ])
            altitude_observations.append(altitude[couple[0], couple[1]])
        DEM.close()

        locations = numpy.array(selected_location)
        # Simulated model is y = z + a*cos(2x) + c*cos(4*x) + b*sin(2x) + d*sin(4*x), with z = altitude, x = latitude, a=b=c=d=0
        slope = 1e-3
        measurement = slope * numpy.array(altitude_observations)

        # Simulated errors
        uncorrelatederror = 0.1 * numpy.ones(measurement.shape)

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(locations, measurement,
                                                      uncorrelatederror)

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        # GENERATING THE MODEL
        # Local component
        geography_covariate_element = GeographyBasedElement(
            self.altitude_datafile, 'lat', 'lon', 'dem', 1.0)
        geography_covariate_element.load()
        combined_element = CombinationElement(
            [geography_covariate_element,
             LatitudeHarmonicsElement()])
        combined_hyperparamters = CombinationHyperparameters([
            CovariateHyperparameters(-0.5 * numpy.log(10.)),
            CombinationHyperparameters([
                CovariateHyperparameters(-0.5 * numpy.log(p))
                for p in [10.0, 10.0, 10.0, 10.0]
            ])
        ])
        combined_component = SpatialComponent(
            ComponentStorage_InMemory(combined_element,
                                      combined_hyperparamters),
            SpatialComponentSolutionStorage_InMemory())

        # GENERATING THE ANALYSIS
        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([combined_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()

        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(slope, statevector[0], delta=0.3)
        self.assertAlmostEqual(0., statevector[1], delta=0.3)
        self.assertAlmostEqual(0., statevector[2], delta=0.3)
        self.assertAlmostEqual(0., statevector[3], delta=0.3)
        self.assertAlmostEqual(0., statevector[4], delta=0.3)

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(
            0, locations, None, None)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        expected = statevector[0]*numpy.array(altitude_observations)\
                        + statevector[1]*LatitudeFunction(numpy.cos, 2.0).compute(locations[:,0]).ravel()\
                        + statevector[2]*LatitudeFunction(numpy.sin, 2.0).compute(locations[:,0]).ravel()\
                        + statevector[3]*LatitudeFunction(numpy.cos, 4.0).compute(locations[:,0]).ravel()\
                        + statevector[4]*LatitudeFunction(numpy.sin, 2.0).compute(locations[:,0]).ravel()
        numpy.testing.assert_almost_equal(expected, result)

        # test output gridding, pointwise limit
        outputstructure = OutputRectilinearGridStructure(
            2,
            epoch_plus_days(2),
            latitudes=numpy.linspace(-60., 60., num=5),
            longitudes=numpy.linspace(-90., 90, num=10))
        pointwise_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        pointwise_limit_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1, 1], 10)
        numpy.testing.assert_array_almost_equal(pointwise_result,
                                                pointwise_limit_result)
Esempio n. 13
0
    def test_mini_world_altitude(self):
        """Testing using altitude as a covariate"""

        # GENERATING OBSERVATIONS
        # Simulated locations: they will exactly sits on the grid points of the covariate datafile
        DEM = Dataset(self.altitude_datafile)
        latitude = DEM.variables['lat'][:]
        longitude = DEM.variables['lon'][:]
        altitude = DEM.variables['dem'][:]

        indices = numpy.stack(
            (numpy.array([1, 3, 267, 80, 10, 215, 17, 120]),
             numpy.array([2, 256, 9, 110, 290, 154, 34, 151])),
            axis=1)

        selected_location = []
        altitude_observations = []
        for couple in indices:
            selected_location.append([
                latitude[couple[0], couple[1]], longitude[couple[0], couple[1]]
            ])
            altitude_observations.append(altitude[couple[0], couple[1]])
        DEM.close()

        locations = numpy.array(selected_location)
        # Simulated measurements: simple linear relation of type: y = PI*x
        measurement = numpy.pi * numpy.array(altitude_observations)

        # Simulated errors
        uncorrelatederror = 0.1 * numpy.ones(measurement.shape)

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(locations, measurement,
                                                      uncorrelatederror)

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        # GENERATING THE MODEL
        # Local component
        geography_covariate_element = GeographyBasedElement(
            self.altitude_datafile, 'lat', 'lon', 'dem', 1.0)
        geography_covariate_element.load()
        geography_based_component = SpatialComponent(
            ComponentStorage_InMemory(
                geography_covariate_element,
                CovariateHyperparameters(-0.5 * numpy.log(10.))),
            SpatialComponentSolutionStorage_InMemory())

        # GENERATING THE ANALYSIS
        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([geography_based_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()

        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(numpy.pi, statevector[0], delta=0.3)

        # Also check entire state vector within outer bounds set by obs
        self.assertTrue(all(statevector < numpy.pi))

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(
            0, locations, None, None)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        numpy.testing.assert_almost_equal(
            statevector[0] * numpy.array(altitude_observations), result)
Esempio n. 14
0
    def test_mini_world_latitude_harmonics(self):
        """Testing on a simple mock data file using latitude harmonics"""

        # GENERATING OBSERVATIONS
        # Simulated locations: they will exactly sits on the grid points of the covariate datafile
        locations = numpy.array([[0.0, 0.0], [0.25, 0.5], [0.5, 0.0]])
        # Simulated model is y = a*cos(2x) + c*cos(4*x) + b*sin(2x) + d*sin(4*x) with x = latitude, so we expect a=c=1, c=d=0
        measurement = LatitudeFunction(numpy.cos, 2.0).compute(
            locations[:, 0]).ravel() + LatitudeFunction(
                numpy.cos, 4.0).compute(locations[:, 0]).ravel()

        # Simulated errors
        uncorrelatederror = 0.1 * numpy.ones(measurement.shape)

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(locations, measurement,
                                                      uncorrelatederror)

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        latitude_harmonics_component = SpatialComponent(
            ComponentStorage_InMemory(
                LatitudeHarmonicsElement(),
                CombinationHyperparameters([
                    CovariateHyperparameters(-0.5 * numpy.log(p))
                    for p in [10.0, 10.0, 10.0, 10.0]
                ])), SpatialComponentSolutionStorage_InMemory())

        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([latitude_harmonics_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # GENERATING THE ANALYSIS

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()

        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(1., statevector[0], delta=0.3)
        self.assertAlmostEqual(1., statevector[2], delta=0.3)
        self.assertAlmostEqual(0., statevector[1], delta=0.3)
        self.assertAlmostEqual(0., statevector[3], delta=0.3)
        # Also check entire state vector within outer bounds set by obs
        self.assertTrue(all(statevector < 1.0))

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(
            0, locations, None, None)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        expected = statevector[0]*LatitudeFunction(numpy.cos, 2.0).compute(locations[:,0]).ravel() + statevector[1]*LatitudeFunction(numpy.sin, 2.0).compute(locations[:,0]).ravel()\
                         + statevector[2] *LatitudeFunction(numpy.cos, 4.0).compute(locations[:,0]).ravel()+ statevector[3]*LatitudeFunction(numpy.sin, 4.0).compute(locations[:,0]).ravel()
        numpy.testing.assert_almost_equal(expected, result)
Esempio n. 15
0
    def test_mini_world_large_and_local(self):

        # Use a number of time steps
        number_of_simulated_time_steps = 30

        # Large-scale spatial variability
        simulated_large_variation = 10.0

        # Local variability
        simulated_local_variation = 1.0

        # Iterations to use
        number_of_solution_iterations = 5

        # Build system

        # Large-scale factor
        element_large = SpaceTimeKroneckerElement(
            n_triangulation_divisions=1,
            alpha=2,
            starttime=0,
            endtime=number_of_simulated_time_steps + 1,
            n_nodes=number_of_simulated_time_steps + 2,
            overlap_factor=2.5,
            H=1)
        initial_hyperparameters_large = SpaceTimeSPDEHyperparameters(
            space_log_sigma=0.0,
            space_log_rho=numpy.log(numpy.radians(5.0)),
            time_log_rho=numpy.log(1.0 / 365.0))

        component_large = SpaceTimeComponent(
            ComponentStorage_InMemory(element_large,
                                      initial_hyperparameters_large),
            SpaceTimeComponentSolutionStorage_InMemory())

        # And a local process
        component_local = SpatialComponent(
            ComponentStorage_InMemory(
                LocalElement(n_triangulation_divisions=3),
                LocalHyperparameters(log_sigma=0.0,
                                     log_rho=numpy.log(numpy.radians(5.0)))),
            SpatialComponentSolutionStorage_InMemory())

        analysis_system = AnalysisSystem([component_large, component_local],
                                         ObservationSource.TMEAN,
                                         log=StringIO())
        # analysis_system = AnalysisSystem([ component_large ], ObservationSource.TMEAN)
        # analysis_system = AnalysisSystem([ component_local ], ObservationSource.TMEAN)

        # use fixed locations from icosahedron
        fixed_locations = cartesian_to_polar2d(
            MeshIcosahedronSubdivision.build(3).points)

        # random measurement at each location
        numpy.random.seed(8976)
        field_basis = simulated_large_variation * numpy.random.randn(
            fixed_locations.shape[0])

        # some time function that varies over a year
        time_basis = numpy.cos(
            numpy.linspace(0.1, 1.75 * numpy.pi,
                           number_of_simulated_time_steps))

        # kronecker product of the two
        large_scale_process = numpy.kron(field_basis,
                                         numpy.expand_dims(time_basis, 1))

        # Random local changes where mean change at each time is zero
        # local_process = simulated_local_variation * numpy.random.randn(large_scale_process.shape[0], large_scale_process.shape[1])
        # local_process -= numpy.tile(local_process.mean(axis=1), (local_process.shape[1], 1)).T

        local_process = numpy.zeros(large_scale_process.shape)
        somefield = simulated_local_variation * numpy.random.randn(
            1, large_scale_process.shape[1])
        somefield -= somefield.ravel().mean()
        local_process[10, :] = somefield
        local_process[11, :] = -somefield

        # Add the two processes
        measurement = large_scale_process + local_process

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(fixed_locations,
                                                      measurement, 0.001)

        # Simulate evaluation of this time index
        simulated_time_indices = range(number_of_simulated_time_steps)

        # All systems linear so single update should be ok
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Get all results
        result = numpy.zeros(measurement.shape)
        for t in range(number_of_simulated_time_steps):
            result[t, :] = analysis_system.evaluate_expected_value(
                'MAP',
                SimulatedObservationStructure(t, fixed_locations, None, None),
                flag='POINTWISE')

        disparity_large_scale = (numpy.abs(result -
                                           large_scale_process)).ravel().max()
        # print 'large scale disparity: ', disparity_large_scale

        disparity_overall = (numpy.abs(result - measurement)).ravel().max()
        # print 'overall disparity: ', disparity_overall

        numpy.testing.assert_almost_equal(result, measurement, decimal=4)
        self.assertTrue(disparity_overall < 1E-4)
Esempio n. 16
0
def main():

    print 'EUSTACE example using HadCRUT4 monthly data'

    # Input data path
    input_basepath = os.path.join(WORKSPACE_PATH, 'data/incoming/HadCRUT4.5.0.0')

    # Input filenames
    input_filenames = [
        'hadcrut4_median_netcdf.nc',
        'hadcrut4_uncorrelated_supplementary.nc',
        'hadcrut4_blended_uncorrelated.nc' ]

    # Months to process
    time_indices = range(2)

    # Climatology component
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(SeasonalElement(n_triangulation_divisions=5, n_harmonics=5, include_local_mean=True),
                                                                         SeasonalHyperparameters(n_spatial_components=6, common_log_sigma=1.0, common_log_rho=0.0)),
                                               SpaceTimeComponentSolutionStorage_InMemory())

    # Number of factors for large scale (factor analysis) component and initial hyperparameters
    n_factors = 5
    factors = [ ]
    factor_hyperparameters = [ ]
    for factor_index in range(n_factors):

        factor_hyperparameters.append( SpaceTimeSPDEHyperparameters(
                space_log_sigma=0.0,
                space_log_rho=numpy.log(10.0 * numpy.pi/180 + 25.0 * numpy.pi/180 *(n_factors - factor_index) / n_factors),
                time_log_rho=numpy.log(1/12.0 + 6/12.0*(n_factors - factor_index) / n_factors)) )

        factors.append( SpaceTimeFactorElement(n_triangulation_divisions=5, alpha=2, starttime=0, endtime=36, overlap_factor=2.5, H=1) )

    # Large scale (factor analysis) component
    large_scale_component = SpaceTimeComponent(ComponentStorage_InMemory(CombinationElement(factors), CombinationHyperparameters(factor_hyperparameters)),
                                               SpaceTimeComponentSolutionStorage_InMemory())

    # Local component
    local_component = SpatialComponent(ComponentStorage_InMemory(LocalElement(n_triangulation_divisions=4), 
                                                                 LocalHyperparameters(log_sigma=0.0, log_rho=numpy.log(10.0 * numpy.pi/180))),
                                       SpatialComponentSolutionStorage_InMemory())

    print 'Analysing inputs'

    # Analysis system using the specified components, for the Tmean observable
    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Make filelist
    input_filelist = [ os.path.join(input_basepath, filename) for filename in input_filenames ]

    # Object to load HadCRUT4 inputs at time indices
    inputloader = AnalysisSystemInputLoaderHadCRUT4(input_filelist)

    # Update with data
    analysis_system.update([ inputloader ], time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Make output filename
        outputdate = inputloader.datetime_at_time_index(time_index)
        pathname = 'example_output_{0:04d}{1:02d}.nc'.format(outputdate.year, outputdate.month)
        print 'Saving: ', pathname

        # Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-87.5, 87.5, num=36),
            longitudes=numpy.linspace(-177.5, 177.5, num=72))

        # Evaluate expected value at these locations
        result_expected_value = analysis_system.evaluate_expected_value(outputstructure)

        # Save results
        filebuilder = FileBuilderHadCRUT4ExampleOutput(pathname, outputstructure)
        filebuilder.add_global_field(TAS_ANOMALY, result_expected_value.reshape(1,36,72))
        filebuilder.save_and_close()

    print 'Complete'