Esempio n. 1
0
else :
    logging.info("Loading existing model from %s...",MODEL_PATH)
    model = load_model(MODEL_PATH)
    logging.info("Completed loading model from file")


logging.info("Predicting on test set...")
output = model.predict(x=test_x, verbose=1)
logging.debug("Shape of output array: %s",np.shape(output))

obtained_tokens = postprocessing.undo_sequential(output)
obtained_words = postprocessing.get_words(test_doc,obtained_tokens)

precision = metrics.precision(test_answer,obtained_words)
recall = metrics.recall(test_answer,obtained_words)
f1 = metrics.f1(precision,recall)

print("###    Obtained Scores    ###")
print("###     (full dataset)    ###")
print("###")
print("### Precision : %.4f" % precision)
print("### Recall    : %.4f" % recall)
print("### F1        : %.4f" % f1)
print("###                       ###")

keras_precision = keras_metrics.keras_precision(test_y,output)
keras_recall = keras_metrics.keras_recall(test_y,output)
keras_f1 = keras_metrics.keras_f1(test_y,output)

print("###    Obtained Scores    ###")
print("###    (fixed dataset)    ###")
Esempio n. 2
0
else:
    logging.info("Loading existing model from %s...", MODEL_PATH)
    model = load_model(MODEL_PATH)
    logging.info("Completed loading model from file")

logging.info("Predicting on test set...")
output = model.predict(x=test_x, verbose=1)
logging.debug("Shape of output array: %s", np.shape(output))

obtained_tokens = postprocessing.undo_sequential(output)
obtained_words = postprocessing.get_words(test_doc, obtained_tokens)

precision = metrics.precision(test_answer, obtained_words, STEM_MODE)
recall = metrics.recall(test_answer, obtained_words, STEM_MODE)
f1 = metrics.f1(precision, recall)

print("###    Obtained Scores    ###")
print("###     (full dataset)    ###")
print("###")
print("### Precision : %.4f" % precision)
print("### Recall    : %.4f" % recall)
print("### F1        : %.4f" % f1)
print("###                       ###")

keras_precision = keras_metrics.keras_precision(test_y, output)
keras_recall = keras_metrics.keras_recall(test_y, output)
keras_f1 = keras_metrics.keras_f1(test_y, output)

print("###    Obtained Scores    ###")
print("###    (fixed dataset)    ###")