Esempio n. 1
0
def predict_train_epoch(epoch, model, train_traj_dataloader, optimizer, device):

    model.train()
    desc= ' -(Train)- '
    total_loss, avg_loss, avg_acc = 0, 0, 0.
    iter_100_loss, iter_100_loc, iter_100_cor_loc, iter_100_cor_time = 0, 0, 0, 0
    total_loc, total_cor_loc = 0, 0
    eva_metric = np.zeros((6, 1))

    for i, data in enumerate(train_traj_dataloader):

        bert_input, bert_label, _, time_input, time_label, user = data[0].to(device).long(), \
                                                                        data[1].to(device).long().contiguous().view(-1), \
                                                                        data[2].to(device).long(), \
                                                                        data[3].to(device).long(), \
                                                                        data[4].to(device).long().contiguous().view(-1), \
                                                                        data[5].to(device).long()
                                                                        #  data[1].to(device).long().contiguous().view(-1), \

        place_logit, time_logit = model(bert_input, time_input, user)

        loss, n_loc, n_cor_loc, n_cor_time = cal_loss_performance(logit1=place_logit, logit2=time_logit, label1=bert_label, label2=time_label, Predict=True)
        eva_metric = get_acc(bert_label, place_logit, eva_metric)

        total_loss += loss.item()
        iter_100_loss += loss.item()
        avg_loss = total_loss/(i+1)

        total_loc += n_loc
        iter_100_loc += n_loc
        total_cor_loc += n_cor_loc
        iter_100_cor_loc += n_cor_loc
        iter_100_cor_time += n_cor_time
        avg_acc = 100.*total_cor_loc/total_loc

        if i % 100 == 0:
            try:
                if n_loc==0 and n_cor_loc==0:
                    n_loc = 1
                print("{} epoch: {:_>2d} | iter: {:_>4d} | loss: {:<10.7f} | avg_loss: {:<10.7f} | acc: {:<4.4f} % | avg_acc: {:<4.4f} % | lr: {:<9.7f} | time_acc: {:<4.4f} %".format(
                    desc, epoch, i, iter_100_loss/100., avg_loss, 100.*iter_100_cor_loc/iter_100_loc, avg_acc, optimizer._print_lr(), 100.*iter_100_cor_time/iter_100_loc))   
                iter_100_loss, iter_100_loc, iter_100_cor_loc, iter_100_cor_time = 0, 0, 0, 0
            except Exception as e:
                print(e)
                exit()
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step_and_update_lr()

    return avg_loss, avg_acc, eva_metric/total_loc
Esempio n. 2
0
def predict_valid_epoch(epoch, model, valid_traj_dataloader, optimizer, device):

    model.eval()
    desc= ' -(Valid)- '
    total_loss, avg_loss, avg_acc = 0, 0, 0.
    iter_100_loss, iter_100_loc, iter_100_cor_loc, iter_100_cor_time= 0, 0, 0, 0
    total_loc, total_cor_loc = 0, 0
    eva_metric = np.zeros((6, 1))
    
    with torch.no_grad():
        for i, data in enumerate(valid_traj_dataloader):
        # bert_input, bert_label, segment_label, is_Next
           
            bert_input, bert_label, _, time_input, time_label, user = data[0].to(device).long(), \
                                                                        data[1].to(device).long().contiguous().view(-1), \
                                                                        data[2].to(device).long(), \
                                                                        data[3].to(device).long(), \
                                                                        data[4].to(device).long().contiguous().view(-1), \
                                                                        data[5].to(device).long()
            place_logit, time_logit = model(bert_input, time_input, user)

            loss, n_loc, n_cor_loc, n_cor_time = cal_loss_performance(logit1=place_logit, logit2=time_logit, label1=bert_label, label2=time_label, Predict=True)
            eva_metric = get_acc(bert_label, place_logit, eva_metric)

            total_loss += loss.item()
            iter_100_loss += loss.item()
            avg_loss = total_loss/(i+1)

            total_loc += n_loc
            iter_100_loc += n_loc
            total_cor_loc += n_cor_loc
            iter_100_cor_loc += n_cor_loc
            iter_100_cor_time += n_cor_time
            avg_acc = 100.*total_cor_loc/total_loc
            
            if i % 100 == 0:
                print("{} epoch: {:_>2d} | iter: {:_>4d} | loss: {:<10.7f} | avg_loss: {:<10.7f} | acc: {:<4.4f} % | avg_acc: {:<4.4f} % | lr: {:<9.7f} | time_acc: {:<4.4f} %".format(
                    desc, epoch, i, iter_100_loss/100., avg_loss, 100.*iter_100_cor_loc/iter_100_loc, avg_acc, optimizer._print_lr(), 100.*iter_100_cor_time/iter_100_loc))   
                iter_100_loss, iter_100_loc, iter_100_cor_loc, iter_100_cor_time = 0, 0, 0, 0

    return avg_loss, avg_acc, eva_metric/total_loc
Esempio n. 3
0
def predict_train_epoch(epoch, model, train_data, train_queue, optimizer,
                        device, batch_size):
    # predict_train_epoch(epoch_i, model, train_data, train_queue, optimizer, device)

    model.train()
    desc = ' -(Train)- '
    total_loss, avg_loss, avg_acc = 0, 0, 0.
    iter_100_loss, iter_100_loc, iter_100_cor_loc, iter_100_cor_time = 0, 0, 0, 0
    total_loc, total_cor_loc = 0, 0
    eva_metric = np.zeros((6, 1))

    len_queue = len(train_queue)
    len_batch = int(np.ceil((len_queue / batch_size)))
    train_queue = [[
        train_queue.popleft() for _ in range(min(batch_size, len(train_queue)))
    ] for k in range(len_batch)]

    for i, batch_queue in enumerate(train_queue):

        max_place = max(
            [len(train_data[u][idx]['loc']) for u, idx in batch_queue])
        max_history = max(
            [len(train_data[u][idx]['history_loc']) for u, idx in batch_queue])

        loc = torch.cat([
            pad_tensor(train_data[u][idx]['loc'], max_place, 0).unsqueeze(0)
            for u, idx in batch_queue
        ],
                        dim=0).to(device).long()
        time = torch.cat([
            pad_tensor(train_data[u][idx]['tim'], max_place, 0).unsqueeze(0)
            for u, idx in batch_queue
        ],
                         dim=0).to(device).long()
        loc_label = torch.cat([
            pad_tensor(train_data[u][idx]['target_loc'], max_place,
                       0).unsqueeze(0) for u, idx in batch_queue
        ],
                              dim=0).to(device).long().contiguous().view(-1)
        time_label = torch.cat([
            pad_tensor(train_data[u][idx]['target_tim'], max_place,
                       0).unsqueeze(0) for u, idx in batch_queue
        ],
                               dim=0).to(device).long().contiguous().view(-1)

        history_loc = torch.cat([
            before_pad_tensor(train_data[u][idx]['history_loc'], max_history,
                              0).unsqueeze(0) for u, idx in batch_queue
        ],
                                dim=0).to(device).long()
        history_time = torch.cat([
            before_pad_tensor(train_data[u][idx]['history_tim'], max_history,
                              0).unsqueeze(0) for u, idx in batch_queue
        ],
                                 dim=0).to(device).long()

        # his_len_traj = torch.from_numpy(np.array([train_data[u][idx]['his_len_traj'] for u, idx in batch_queue])).to(device).long()

        input_loc = torch.cat([history_loc, loc], dim=1)
        input_tim = torch.cat([history_time, time], dim=1)

        place_logit = model(input_loc, input_tim, max_history)

        loss, n_loc, n_cor_loc, n_cor_time = cal_loss_performance(
            logit1=place_logit, label1=loc_label, Predict=True)
        eva_metric = get_acc(loc_label, place_logit, eva_metric)

        total_loss += loss.item()
        iter_100_loss += loss.item()
        avg_loss = total_loss / (i + 1)

        total_loc += n_loc
        iter_100_loc += n_loc
        total_cor_loc += n_cor_loc
        iter_100_cor_loc += n_cor_loc
        iter_100_cor_time += n_cor_time
        avg_acc = 100. * total_cor_loc / total_loc

        if i % 100 == 0:
            try:
                if n_loc == 0 and n_cor_loc == 0:
                    n_loc = 1
                print(
                    "{} epoch: {:_>2d} | iter: {:_>4d}/{:_>4d} | loss: {:<10.7f} | avg_loss: {:<10.7f} | acc: {:<4.4f} % | avg_acc: {:<4.4f} % | lr: {:<9.7f} | time_acc: {:<4.4f} %"
                    .format(desc, epoch, i, len_batch, iter_100_loss / 100.,
                            avg_loss, 100. * iter_100_cor_loc / iter_100_loc,
                            avg_acc, optimizer._print_lr(),
                            100. * iter_100_cor_time / iter_100_loc))
                iter_100_loss, iter_100_loc, iter_100_cor_loc, iter_100_cor_time = 0, 0, 0, 0
            except Exception as e:
                print(e)
                exit()

        optimizer.zero_grad()
        loss.backward()
        optimizer.step_and_update_lr()

    return avg_loss, avg_acc, eva_metric / total_loc
Esempio n. 4
0
def predict_valid_epoch(epoch, model, valid_data, valid_queue, optimizer,
                        device, batch_size):

    model.eval()
    desc = ' -(Valid)- '
    total_loss, avg_loss, avg_acc = 0, 0, 0.
    iter_100_loss, iter_100_loc, iter_100_cor_loc, iter_100_cor_time = 0, 0, 0, 0
    total_loc, total_cor_loc = 0, 0
    eva_metric = np.zeros((6, 1))

    len_queue = len(valid_queue)
    len_batch = int(np.ceil((len_queue / batch_size)))
    valid_queue = [[
        valid_queue.popleft() for _ in range(min(batch_size, len(valid_queue)))
    ] for k in range(len_batch)]

    with torch.no_grad():
        for i, batch_queue in enumerate(valid_queue):

            max_place = max(
                [len(valid_data[u][idx]['loc']) for u, idx in batch_queue])
            max_history = max([
                len(valid_data[u][idx]['history_loc'])
                for u, idx in batch_queue
            ])

            loc = torch.cat([
                pad_tensor(valid_data[u][idx]['loc'], max_place,
                           0).unsqueeze(0) for u, idx in batch_queue
            ],
                            dim=0).to(device).long()
            time = torch.cat([
                pad_tensor(valid_data[u][idx]['tim'], max_place,
                           0).unsqueeze(0) for u, idx in batch_queue
            ],
                             dim=0).to(device).long()
            loc_label = torch.cat(
                [
                    pad_tensor(valid_data[u][idx]['target_loc'], max_place,
                               0).unsqueeze(0) for u, idx in batch_queue
                ],
                dim=0).to(device).long().contiguous().view(-1)
            time_label = torch.cat(
                [
                    pad_tensor(valid_data[u][idx]['target_tim'], max_place,
                               0).unsqueeze(0) for u, idx in batch_queue
                ],
                dim=0).to(device).long().contiguous().view(-1)

            history_loc = torch.cat([
                before_pad_tensor(valid_data[u][idx]['history_loc'],
                                  max_history, 0).unsqueeze(0)
                for u, idx in batch_queue
            ],
                                    dim=0).to(device).long()
            history_time = torch.cat([
                before_pad_tensor(valid_data[u][idx]['history_tim'],
                                  max_history, 0).unsqueeze(0)
                for u, idx in batch_queue
            ],
                                     dim=0).to(device).long()

            input_loc = torch.cat([history_loc, loc], dim=1)
            input_tim = torch.cat([history_time, time], dim=1)

            place_logit = model(input_loc, input_tim, max_history)

            loss, n_loc, n_cor_loc, n_cor_time = cal_loss_performance(
                logit1=place_logit, label1=loc_label, Predict=True)
            eva_metric = get_acc(loc_label, place_logit, eva_metric)

            total_loss += loss.item()
            iter_100_loss += loss.item()
            avg_loss = total_loss / (i + 1)

            total_loc += n_loc
            iter_100_loc += n_loc
            total_cor_loc += n_cor_loc
            iter_100_cor_loc += n_cor_loc
            iter_100_cor_time += n_cor_time
            avg_acc = 100. * total_cor_loc / total_loc

            if i % 100 == 0:
                print(
                    "{} epoch: {:_>2d} | iter: {:_>4d}/{:_>4d} | loss: {:<10.7f} | avg_loss: {:<10.7f} | acc: {:<4.4f} % | avg_acc: {:<4.4f} % | lr: {:<9.7f} | time_acc: {:<4.4f} %"
                    .format(desc, epoch, i, len_batch, iter_100_loss / 100.,
                            avg_loss, 100. * iter_100_cor_loc / iter_100_loc,
                            avg_acc, optimizer._print_lr(),
                            100. * iter_100_cor_time / iter_100_loc))
                iter_100_loss, iter_100_loc, iter_100_cor_loc, iter_100_cor_time = 0, 0, 0, 0

    return avg_loss, avg_acc, eva_metric / total_loc