Esempio n. 1
0
def evaluate_multi(database_path, user, target_ncolors, impaths, outdir):
  pngquant = PngQuant()
  scorer = NonLinearTransform(user, database_path=database_path)
  scorer.fit()
  specimen = SpecimenQuant(scorer, quantizer=pngquant)
  tempdir = tempfile.mkdtemp()

  alphas = np.arange(0.0, 1.1, 0.1)
  acc = []
  for impath in impaths:
    for alpha in alphas:
      print "%s alpha = %f" % (impath, alpha)
      specimen_impath = specimen.compress(impath, target_ncolors, alpha, outdir=tempdir)
      res = evaluate_image(impath, specimen_impath)
      res['alpha'] = alpha
      res['image'] = impath
      acc.append(res)

  df = pd.DataFrame(acc)
  df.to_csv(os.path.join(outdir, 'multi_objective_eval.csv'))
  size_at_1 = df[df['alpha'] == 1.0][['image', 'fs']].rename(columns={'fs': 'denom'})
  df = pd.merge(df, size_at_1, on=['image'])
  df['fs_decrease'] = df['fs'] / df['denom'] - 1

  df_summary = df.groupby('alpha')[['fs_decrease']].mean().reset_index()
  alpha_plot = sns.pointplot(data=df_summary, x='alpha', y='fs_decrease')
  alpha_plot.set_xlabel(r'$\alpha$ (Multi-Objective Weight)', size=15)
  alpha_plot.set_ylabel(r'Average File Size Decrease Relative to Output For $\alpha=1$', size=15)
  alpha_plot.tick_params(labelsize=15)
  plt.tight_layout()
  plot_path = os.path.join(outdir, 'multi_objective_eval.pdf')
  alpha_plot.get_figure().savefig(plot_path)

  # clean up the temporary directory created for images
  shutil.rmtree(tempdir)
Esempio n. 2
0
def evaluate_review(env, image, nms_params, review):
    model = env.best.model.to(env.device)
    encoder = env.encoder.to(env.device)

    scale = env.args.scale

    detections = evaluate.evaluate_image(model,
                                         image,
                                         encoder,
                                         device=env.device,
                                         nms_params=nms_params).detections

    if detections._size == 0:
        return make_detections(env, [])

    review = tensors_to(review, device=env.device)
    ious = box.iou_matrix(detections.bbox, review.bbox * scale)

    ious[ious < nms_params.nms].fill_(-1)
    scores = ious.mul(detections.confidence.unsqueeze(1))

    review_inds = scores.max(0).values.argsort(descending=True)

    detections = table_list(detections)
    for i in review_inds.tolist():
        score, ind = scores[:, i].max(0)

        if score > 0:
            detections[ind].match = i

        scores[ind].fill_(0)

    return make_detections(env, detections)
Esempio n. 3
0
def evaluate_vis(model,
                 encoder,
                 data,
                 nms_params,
                 classes,
                 args,
                 debug_key=None,
                 iou=0.5):

    with torch.no_grad():

        result = evaluate.evaluate_image(model,
                                         data.image,
                                         encoder,
                                         device=device,
                                         nms_params=nms_params)
        print(shape(result))

        target = data.target._map(Tensor.to, result.detections._device)

        matches = match_boxes(result.detections, target, threshold=iou)
        scores = mAP_matches(matches, target.label.size(0))

        debug = encoder.debug(data.image, target, result.prediction, classes)

        return struct(image=data.image,
                      file=data.file,
                      id=data.id,
                      image_size=data.image_size,
                      matches=matches,
                      target=data.target,
                      detections=result.detections,
                      stats=image_stats(data.image),
                      mAP=scores.mAP,
                      debug=debug[debug_key] if debug_key else None)
Esempio n. 4
0
def evaluate_detections(env, image, nms_params):
    model = env.best.model
    detections = evaluate.evaluate_image(model.to(env.device),
                                         image,
                                         env.encoder.to(env.device),
                                         nms_params=nms_params,
                                         device=env.device).detections
    return make_detections(list(detections._sequence()))
Esempio n. 5
0
 def f(image, nms_params=detection_table.nms_defaults):
     return evaluate_image(model,
                           image,
                           encoder,
                           nms_params=nms_params,
                           device=device).detections
Esempio n. 6
0
print("model parameters:")
pprint_struct(model_args)

classes = model_args.dataset.classes

model.to(device)
encoder.to(device)

frame = cv.imread_color(args.input)

nms_params = detection_table.nms_defaults._extend(nms=args.threshold)
pprint_struct(nms_params)

detections = evaluate_image(model,
                            frame,
                            encoder,
                            nms_params=nms_params,
                            device=device,
                            crop_boxes=True)

for prediction in detections._sequence():

    if prediction.confidence > 0.7:
        label_class = classes[prediction.label].name
        display.draw_box(frame,
                         prediction.bbox,
                         confidence=prediction.confidence,
                         name=label_class.name,
                         color=display.to_rgb(label_class.colour))

frame = cv.resize(frame, (frame.size(1) // 2, frame.size(0) // 2))
cv.display(frame)
Esempio n. 7
0
print_timer("load", len(images), start)

if args.tensorrt:
    print("compiling with tensorrt...")
    from torch2trt import torch2trt
    x = torch.ones(1, 3, int(size[1]), int(size[0])).to(device)
    model = torch2trt(model, [x], fp16_mode=True)
    print("done")

dummy = torch.ones(1, 3, int(size[1]), int(size[0])).to(device)
model(dummy)

start = time()

for i in range(len(images)):
    dummy = torch.ones(1, 3, int(size[1]), int(size[0])).to(device)
    model(dummy)

print_timer("model only", len(images), start)

start = time()

for image in images:
    detections = evaluate_image(model,
                                image,
                                encoder,
                                nms_params=nms_params,
                                device=device).detections

print_timer("evaluate_image", len(images), start)
def train_ensemble(total_epochs, idx, last_epoch, test_every, model, device, crit_reg, optimizer, scheduler, output_path):
    from train import train_image_reg
    from inference import inference_image_reg

    # open output file
    fconv = open(os.path.join(output_path, '{}-image-training.csv'.format(now)), 'w')
    fconv.write('epoch,image_reg_loss\n')
    fconv.close()
    # 训练结果保存在 output_path/<timestamp>-image-training.csv
    if test_every <= args.epochs:
        fconv = open(os.path.join(output_path, '{}-image-validation.csv'.format(now)), 'w')
        fconv.write('epoch,mse,qwk\n')
        fconv.close()
    # 验证结果保存在 output_path/<timestamp>-image-validation.csv

    validate = lambda epoch, test_every: (epoch + 1) % test_every == 0
    start = int(time.time())
    with SummaryWriter(comment=output_path.rsplit('/', maxsplit=1)[-1]) as writer:

        print("PT.I - image regression training ...")
        for epoch in range(1 + last_epoch, total_epochs + 1):
            try:

                if device.type == 'cuda':
                    torch.cuda.manual_seed(epoch)
                else:
                    torch.manual_seed(epoch)

                data.setmode(True, 5)
                train_loader = data.get_loader(True, idx, batch_size=args.image_batch_size, num_workers=args.workers,
                                               collate_fn=collate_fn)
                loss = train_image_reg(train_loader, epoch, total_epochs, model, device, crit_reg, optimizer, scheduler)

                print("image reg loss: {:.4f}".format(loss))
                fconv = open(os.path.join(output_path, '{}-image-training.csv'.format(now)), 'a')
                fconv.write('{},{}\n'.format(epoch, loss))
                fconv.close()

                writer.add_scalar("image reg loss", loss, epoch)

                # Validating step
                if validate(epoch, test_every):
                    print('Validating ...')

                    # image validating
                    data.setmode(False, 4)
                    val_loader = data.get_loader(False, idx, batch_size=args.image_batch_size,
                                                 num_workers=args.workers)
                    counts = inference_image_reg(val_loader, model, device, epoch, total_epochs)

                    regconv = open(os.path.join(output_path, '{}-count-e{}.csv'.format(
                        now, epoch)), 'w', newline="")
                    w = csv.writer(regconv, delimiter=',')
                    w.writerow(['id', 'organ', 'label', 'count', 'category label', 'loss'])
                    for i, count in enumerate(np.round(counts).astype(int)):
                        w.writerow([i + 1, data.validating_set.organs[i], data.validating_set.labels[i],
                                    count, data.validating_set.cls_labels[i],
                                    np.abs(count - data.validating_set.labels[i])])
                    regconv.close()

                    metrics_i = evaluate_image(data.validating_set, [], counts)
                    print('image categories mAP: {} | MSE: {} | QWK: {}\n'.format(*metrics_i))
                    fconv = open(os.path.join(output_path, '{}-image-validation.csv'.format(now)), 'a')
                    fconv.write('{},{},{}\n'.format(epoch, *metrics_i[1:]))
                    fconv.close()

                    add_scalar_metrics(writer, epoch, metrics_i)

                save_model(epoch, model, optimizer, scheduler, output_path, prefix='reg_pt1_{}'.format(idx))

            except KeyboardInterrupt:
                save_model(epoch, model, optimizer, scheduler, output_path, prefix='reg_pt1_{}'.format(idx))
                print("\nTraining interrupted at epoch {}. Model saved in \'{}\'.".format(epoch, output_path))
                sys.exit(0)

    end = int(time.time())
    print("\nTrained for {} epochs. Model saved in \'{}\'. Runtime: {}s".format(total_epochs, output_path, end - start))