Esempio n. 1
0
    data_path = '/content/'
    file_prefix = 'yoochoose_clicks_sampled'
    buys_prefix = 'yoochoose_buys_sampled'

    limit_train = None  #limit in number of rows or None
    limit_test = None  #limit in number of rows or None
    density_value = 1  #randomly filter out events (0.0-1.0, 1:keep all)
    remove_imdups = False

    export_csv = 'results/test-results.csv'

    print(data_path)

    # create a list of metric classes to be evaluated
    metric = []
    metric.append(ac.HitRate(20))
    metric.append(ac.HitRate(10))
    metric.append(ac.HitRate(5))
    metric.append(ac.HitRate(3))
    metric.append(ac.MRR(20))
    metric.append(ac.MRR(10))
    metric.append(ac.MRR(5))
    metric.append(ac.MRR(3))
    metric.append(cov.Coverage(20))
    metric.append(cov.Coverage(10))
    metric.append(cov.Coverage(5))
    metric.append(cov.Coverage(3))
    metric.append(pop.Popularity(20))
    metric.append(pop.Popularity(10))
    metric.append(pop.Popularity(5))
    metric.append(pop.Popularity(3))
Esempio n. 2
0
    data_path = 'data/{}/single/'.format(database_used)
    data_trained = 'data/{}/prepared2d/'.format(database_used)
    file_prefix = file_prefixes[database_used]

    limit_train = None  # Limit in number of rows or None
    limit_test = None  # Limit in number of rows or None
    density_value = 1  # Randomly filter out events (0.0-1.0, 1:keep all)
    remove_imdups = False

    # sampling = "all"
    export_csv = 'results/results.csv'.format(database_used)
    # export_csv = 'results/full/results-{}-knn-context.csv'.format(database_used)

    # create a list of metric classes to be evaluated
    metric = []
    metric.append(ac.HitRate(20))
    # metric.append( ac.HitRate(10) )
    # metric.append( ac.HitRate(5) )
    # metric.append( ac.HitRate(3) )
    metric.append(ac.MRR(20))
    # metric.append( ac.MRR(10) )
    # metric.append( ac.MRR(5) )
    # metric.append( ac.MRR(3) )
    metric.append(cov.Coverage(20))
    # metric.append( cov.Coverage(10) )
    # metric.append( cov.Coverage(5) )
    # metric.append( cov.Coverage(3) )
    # metric.append( pop.Popularity(20) )
    # metric.append( pop.Popularity(10) )
    # metric.append( pop.Popularity(5) )
    # metric.append( pop.Popularity(3) )