def non_scenario_ami(n_words): file = open(path + 'result_ami/result_non_scen.txt', 'w') meet_list = tools.non_scenario_based file.write('************************' + str(meet_list) + '*************************************' + '\n') all_documents = tools.all_nonscenario_based_documents example = tf_idf_class(all_documents) tfidf_representation = example.tfidf() for meet in meet_list: file.write(meet + '\n') file.write('*****************' + '\n') c = compare_with_AMI_results(meet) c.get_resumes() candidate = c.get_best_k_tfidf(n_words, tfidf_representation[tools.non_scenario_based.index(meet)]) file.write('candidate = ' + str(candidate) + '\n') bleu_measure = c.bleu_evaluation(candidate) file.write('score_abstractive = ' + str(bleu_measure[0]) + '\n') file.write('score_extractive = ' + str(bleu_measure[1]) + '\n') file.flush() file.write('\n') file.flush() file.close()
example = tf_idf_class(all_documents) tfidf_representation = example.tfidf() counter = 0 for meet in meet_list: print '***********' print 'meet', meet meet_block = classification_scenario_based[counter] file.write(str(meet_block) + '\n') file.write('*****************' + '\n') c = compare_with_AMI_results(meet_block) c.get_resumes() candidate = c.get_best_k_tfidf(20, tfidf_representation[counter]) file.write('candidate = ' + str(candidate) + '\n') bleu_measure = c.bleu_evaluation(candidate) file.write('score_abstractive = ' + str(bleu_measure[0]) + '\n') file.write('score_extractive = ' + str(bleu_measure[1]) + '\n') file.write('\n') file.flush() counter += 1
# # # # meet_list = tools.scenario_based file.write('************************' + str(meet_list) + '*************************************\n') all_documents = tools.all_scenario_based_documents example = tf_idf_class(all_documents) tfidf_representation = example.tfidf() for meet in meet_list: file.write(meet+ '\n') file.write('*****************'+ '\n') c = compare_with_AMI_results(meet) c.get_resumes() candidate = c.get_best_k_tfidf(20, tfidf_representation[tools.scenario_based.index(meet)]) file.write('candidate = ' + str(candidate)+ '\n') bleu_measure = c.bleu_evaluation(candidate) file.write('score_abstractive = ' + str(bleu_measure[0]) + '\n') file.write(' score_extractive = ' + str(bleu_measure[1])+ '\n') file.write('\n') file.flush() file.close()
def blocks_4_4_ami(n_words, length= None): """ this function extracts the first :return: """ file = open(path + 'result_ami/result_4_4.txt', 'w') adress = path + '/manual_corpus/' if length is None: for meet_list in classification_scenario_based: file.write('************************' + str(meet_list) + '*************************************\n') all_documents = [tools.text_to_string(adress + i + '.txt') for i in meet_list] example = tf_idf_class(all_documents) # , document_0) tfidf_representation = example.tfidf() for meet in meet_list: file.write(meet+ '\n') file.write('*****************\n') c = compare_with_AMI_results(meet) c.get_resumes() candidate = c.get_best_k_tfidf(n_words, tfidf_representation[meet_list.index(meet)]) file.write('candidate = ' + str(candidate)+ '\n') file.flush() bleu_measure = c.bleu_evaluation(candidate) file.write('score_abstractive = ' + str(bleu_measure[0])+ '\n') file.write('score_extractive = ' + str(bleu_measure[1])+ '\n') file.flush() file.write('\n') file.flush() else: for meet_list in classification_scenario_based[0:length]: file.write('************************' + str(meet_list) + '*************************************\n') all_documents = [tools.text_to_string(adress + i + '.txt') for i in meet_list] example = tf_idf_class(all_documents) # , document_0) tfidf_representation = example.tfidf(length) for meet in meet_list: file.write(meet+ '\n') file.write('*****************\n') c = compare_with_AMI_results(meet) c.get_resumes() candidate = c.get_best_k_tfidf(n_words, tfidf_representation[meet_list.index(meet)]) file.write('candidate = ' + str(candidate)+ '\n') file.flush() bleu_measure = c.bleu_evaluation(candidate) file.write('score_abstractive = ' + str(bleu_measure[0])+ '\n') file.write('score_extractive = ' + str(bleu_measure[1])+ '\n') file.flush() file.write('\n') file.flush() file.close() return
def blocks_ami(n_words, length = None): #print('we are inside') file = open(path + 'result_ami/result_4_block_scen.txt', 'w') adress_ = path + "manual_blocks/" meet_list = ["block_" + str(i + 1) for i in xrange(34)] all_documents = [tools.text_to_string(adress_ + i + '.txt') for i in meet_list] example = tf_idf_class(all_documents) counter = 0 if length is None: tfidf_representation = example.tfidf() for meet in meet_list: #print '***********' #print 'meet', meet meet_block = classification_scenario_based[counter] file.write(str(meet_block) + '\n') file.write('*****************' + '\n') file.flush() c = compare_with_AMI_results(meet_block) c.get_resumes() candidate = c.get_best_k_tfidf(n_words, tfidf_representation[counter]) file.write('candidate = ' + str(candidate) + '\n') file.flush() bleu_measure = c.bleu_evaluation(candidate) file.write('score_abstractive = ' + str(bleu_measure[0]) + '\n') file.write('score_extractive = ' + str(bleu_measure[1]) + '\n') file.write('\n') file.flush() counter += 1 else: #print('length is not none') tfidf_representation = example.tfidf(length) for meet in meet_list[0:length]: #print '***********' #print 'meet', meet meet_block = classification_scenario_based[counter] file.write(str(meet_block) + '\n') file.write('*****************' + '\n') file.flush() c = compare_with_AMI_results(meet_block) c.get_resumes() candidate = c.get_best_k_tfidf(n_words, tfidf_representation[counter]) file.write('candidate = ' + str(candidate) + '\n') file.flush() bleu_measure = c.bleu_evaluation(candidate) file.write('score_abstractive = ' + str(bleu_measure[0]) + '\n') file.write('score_extractive = ' + str(bleu_measure[1]) + '\n') file.write('\n') file.flush() counter += 1 file.close()