def testTrain(): #saveCombinationClass() combination = loadCombinationClass() combination.train(alpha = 0.01, iter = 10000) tdata = "Data/100k/u1.test" answers, predicts = combination.predict(np.loadtxt(tdata)) err = evaluationRMSE(answers, predicts) print("Error : %f" % err)
def test_predict(): fdata = "Data/100k/u1.base" ftest = "Data/100k/u1.test" bias = Bias(np.loadtxt(fdata), np.loadtxt(ftest)) bias.calculateBias() answer, predicts = bias.predict() err = evaluationRMSE(answer, predicts) print("Err: %f" % (err))
def testTrain(): #saveCombinationClass() combination = loadCombinationClass() combination.train(alpha=0.01, iter=10000) tdata = "Data/100k/u1.test" answers, predicts = combination.predict(np.loadtxt(tdata)) err = evaluationRMSE(answers, predicts) print("Error : %f" % err)
def test_SVD(): fdata = "Data/100k/u1.base" ftest = "Data/100k/u1.test" svd = SVD(np.loadtxt(fdata), np.loadtxt(ftest)) svd.generaterMat() svd.calcSVD() answer, predicts = svd.predict() err = evaluationRMSE(answer, predicts) print("Error: %f" % err)
def test_knn(): fdata = "Data/100k/u1.base" ftest = "Data/100k/u1.test" knn = KNN(np.loadtxt(fdata), np.loadtxt(ftest)) #knn.calcSimMatrix() #knn.saveSim(100) knn.loadSim(100) answer, predicts = knn.predict(n = 15) err = evaluationRMSE(answer, predicts) print("Error: %f" % err)
def test_matFactory(): fdata = "Data/100k/u1.base" ftest = "Data/100k/u1.test" matFactory = MatFactory(np.loadtxt(fdata), np.loadtxt(ftest)) factors = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200] for i in factors: matFactory.train(20, i) answer, predicts = matFactory.predict() err = evaluationRMSE(answer, predicts) print("Factors: %d, Error: %f" % (i, err))
def test(): fdata = "Data/100k/u1.base" ftest = "Data/100k/u1.test" simi = Similarity(fdata, ftest) #simi.calcSimi() #simi.calcSimiLocal() #simi.saveSimi(1) simi.calcSimiMatrix() answer, predicts = simi.predict() err = evaluationRMSE(answer, predicts) print("Error: %f" % err)
def test(): from bias import Bias fdata = "Data/100k/u1.base" ftest = "Data/100k/u1.test" simi = Similarity(np.loadtxt(fdata), np.loadtxt(ftest)) #simi.calcSimi() simi.calcSimiMatrix() #simi.saveSimi(10) #simi.loadSimi(10) answer, predicts = simi.predict() err = evaluationRMSE(answer, predicts) print("Error: %f" % err)
def calAll(self): self.errs = [0] * 5 bias = Bias(self.data, self.test) bias.calculateBias() answers, predicts = bias.predict() err = evaluationRMSE(answers, predicts) self.errs[0] = err print("Bias: %f" % err) similarity = Similarity(self.data, self.test) similarity.calculateBias() similarity.calcSimiMatrix() answers, predicts = similarity.predict() err = evaluationRMSE(answers, predicts) self.errs[1] = err print("Similarity: %f" % err) svd = SVD(self.data, self.test) svd.generaterMat() svd.calcSVD() answers, predicts = svd.predict() err = evaluationRMSE(answers, predicts) self.errs[2] = err print("SVD: %f" % err) matFactory = MatFactory(self.data, self.test) matFactory.train(20, 35) answers, predicts = matFactory.predict() err = evaluationRMSE(answers, predicts) self.errs[3] = err print("MatFactory: %f" % evaluationRMSE(answers, predicts)) combination = Combination(self.data) combination.separateData() combination.calculate() combination.train(alpha=0.01, iter=10000) answers, predicts = combination.predict(self.test) err = evaluationRMSE(answers, predicts) self.errs[4] = err print("Combination: %f" % err) return self.errs
def calAll(self): self.errs = [0] * 5 bias = Bias(self.data, self.test) bias.calculateBias() answers, predicts = bias.predict() err = evaluationRMSE(answers, predicts) self.errs[0] = err print("Bias: %f" % err) similarity = Similarity(self.data, self.test) similarity.calculateBias() similarity.calcSimiMatrix() answers, predicts = similarity.predict() err = evaluationRMSE(answers, predicts) self.errs[1] = err print("Similarity: %f" % err) svd = SVD(self.data, self.test) svd.generaterMat() svd.calcSVD() answers, predicts = svd.predict() err = evaluationRMSE(answers, predicts) self.errs[2] = err print("SVD: %f" % err) matFactory = MatFactory(self.data, self.test) matFactory.train(20, 35) answers, predicts = matFactory.predict() err = evaluationRMSE(answers, predicts) self.errs[3] = err print("MatFactory: %f" % evaluationRMSE(answers, predicts)) combination = Combination(self.data) combination.separateData() combination.calculate() combination.train(alpha = 0.01, iter = 10000) answers, predicts = combination.predict(self.test) err = evaluationRMSE(answers, predicts) self.errs[4] = err print("Combination: %f" % err) return self.errs