def test_weight_by_mole_fraction_protocol(component_smiles, value):

    full_substance = Substance.from_components("C", "CC", "CCC")
    component = Substance.from_components(component_smiles)

    mole_fraction = next(
        iter(full_substance.get_amounts(component.components[0].identifier))
    ).value

    with tempfile.TemporaryDirectory() as temporary_directory:

        weight_protocol = WeightByMoleFraction("weight")
        weight_protocol.value = value
        weight_protocol.full_substance = full_substance
        weight_protocol.component = component
        weight_protocol.execute(temporary_directory, ComputeResources())
        assert weight_protocol.weighted_value == value * mole_fraction
def test_same_component_batching():

    thermodynamic_state = ThermodynamicState(temperature=1.0 * unit.kelvin,
                                             pressure=1.0 * unit.atmosphere)

    data_set = PhysicalPropertyDataSet()
    data_set.add_properties(
        Density(
            thermodynamic_state=thermodynamic_state,
            substance=Substance.from_components("O", "C"),
            value=0.0 * unit.kilogram / unit.meter**3,
        ),
        EnthalpyOfVaporization(
            thermodynamic_state=thermodynamic_state,
            substance=Substance.from_components("O", "C"),
            value=0.0 * unit.kilojoule / unit.mole,
        ),
        Density(
            thermodynamic_state=thermodynamic_state,
            substance=Substance.from_components("O", "CO"),
            value=0.0 * unit.kilogram / unit.meter**3,
        ),
        EnthalpyOfVaporization(
            thermodynamic_state=thermodynamic_state,
            substance=Substance.from_components("O", "CO"),
            value=0.0 * unit.kilojoule / unit.mole,
        ),
    )

    options = RequestOptions()

    submission = EvaluatorClient._Submission()
    submission.dataset = data_set
    submission.options = options

    with DaskLocalCluster() as calculation_backend:

        server = EvaluatorServer(calculation_backend)
        batches = server._batch_by_same_component(submission, "")

    assert len(batches) == 2

    assert len(batches[0].queued_properties) == 2
    assert len(batches[1].queued_properties) == 2
Esempio n. 3
0
def test_simulation_data_query():

    substance_a = Substance.from_components("C")
    substance_b = Substance.from_components("CO")

    substance_full = Substance.from_components("C", "CO")

    substances = [substance_a, substance_b, substance_full]

    with tempfile.TemporaryDirectory() as base_directory:

        backend_directory = os.path.join(base_directory, "storage_dir")
        storage = LocalFileStorage(backend_directory)

        for substance in substances:

            data_directory = os.path.join(base_directory,
                                          f"{substance.identifier}")
            data_object = create_dummy_simulation_data(data_directory,
                                                       substance)

            storage.store_object(data_object, data_directory)

        for substance in substances:

            substance_query = SimulationDataQuery()
            substance_query.substance = substance

            results = storage.query(substance_query)
            assert results is not None and len(results) == 1
            assert len(next(iter(results.values()))[0]) == 3

        component_query = SimulationDataQuery()
        component_query.substance = substance_full
        component_query.substance_query = SubstanceQuery()
        component_query.substance_query.components_only = True

        results = storage.query(component_query)
        assert results is not None and len(results) == 2
Esempio n. 4
0
def test_calculate_reduced_potential_openmm():

    substance = Substance.from_components("O")
    thermodynamic_state = ThermodynamicState(298 * unit.kelvin,
                                             1.0 * unit.atmosphere)

    with tempfile.TemporaryDirectory() as directory:
        force_field_path = path.join(directory, "ff.json")

        with open(force_field_path, "w") as file:
            file.write(build_tip3p_smirnoff_force_field().json())

        build_coordinates = BuildCoordinatesPackmol("build_coordinates")
        build_coordinates.max_molecules = 10
        build_coordinates.mass_density = 0.05 * unit.grams / unit.milliliters
        build_coordinates.substance = substance
        build_coordinates.execute(directory, None)

        assign_parameters = BuildSmirnoffSystem(f"assign_parameters")
        assign_parameters.force_field_path = force_field_path
        assign_parameters.coordinate_file_path = build_coordinates.coordinate_file_path
        assign_parameters.substance = substance
        assign_parameters.execute(directory, None)

        reduced_potentials = OpenMMReducedPotentials(f"reduced_potentials")
        reduced_potentials.substance = substance
        reduced_potentials.thermodynamic_state = thermodynamic_state
        reduced_potentials.reference_force_field_paths = [force_field_path]
        reduced_potentials.system_path = assign_parameters.system_path
        reduced_potentials.trajectory_file_path = get_data_filename(
            "test/trajectories/water.dcd")
        reduced_potentials.coordinate_file_path = get_data_filename(
            "test/trajectories/water.pdb")
        reduced_potentials.kinetic_energies_path = get_data_filename(
            "test/statistics/stats_pandas.csv")
        reduced_potentials.high_precision = False
        reduced_potentials.execute(directory, ComputeResources())

        assert path.isfile(reduced_potentials.statistics_file_path)

        final_array = StatisticsArray.from_pandas_csv(
            reduced_potentials.statistics_file_path)
        assert ObservableType.ReducedPotential in final_array
Esempio n. 5
0
def _setup_dummy_system(directory):

    force_field_path = path.join(directory, "ff.json")

    with open(force_field_path, "w") as file:
        file.write(build_tip3p_smirnoff_force_field().json())

    substance = Substance.from_components("C")

    build_coordinates = BuildCoordinatesPackmol("build_coordinates")
    build_coordinates.max_molecules = 1
    build_coordinates.mass_density = 0.001 * unit.grams / unit.milliliters
    build_coordinates.substance = substance
    build_coordinates.execute(directory, None)

    assign_parameters = BuildSmirnoffSystem(f"assign_parameters")
    assign_parameters.force_field_path = force_field_path
    assign_parameters.coordinate_file_path = build_coordinates.coordinate_file_path
    assign_parameters.substance = substance
    assign_parameters.execute(directory, None)

    return build_coordinates.coordinate_file_path, assign_parameters.system_path
Esempio n. 6
0
def test_build_tleap_system():

    with tempfile.TemporaryDirectory() as directory:

        force_field_path = path.join(directory, "ff.json")

        with open(force_field_path, "w") as file:
            file.write(TLeapForceFieldSource().json())

        substance = Substance.from_components("C", "O", "C(=O)N")

        build_coordinates = BuildCoordinatesPackmol("build_coordinates")
        build_coordinates.max_molecules = 9
        build_coordinates.substance = substance
        build_coordinates.execute(directory, None)

        assign_parameters = BuildTLeapSystem(f"assign_parameters")
        assign_parameters.force_field_path = force_field_path
        assign_parameters.coordinate_file_path = build_coordinates.coordinate_file_path
        assign_parameters.substance = substance
        assign_parameters.execute(directory, None)
        assert path.isfile(assign_parameters.system_path)
Esempio n. 7
0
def _build_input_output_substances():
    """Builds sets if input and expected substances for the
    `test_build_coordinate_composition` test.

    Returns
    -------
    list of tuple of Substance and Substance
        A list of input and expected substances.
    """

    # Start with some easy cases
    substances = [
        (Substance.from_components("O"), Substance.from_components("O")),
        (Substance.from_components("O",
                                   "C"), Substance.from_components("O", "C")),
        (
            Substance.from_components("O", "C", "CO"),
            Substance.from_components("O", "C", "CO"),
        ),
    ]

    # Handle some cases where rounding will need to occur.
    input_substance = Substance()
    input_substance.add_component(Component("O"), MoleFraction(0.41))
    input_substance.add_component(Component("C"), MoleFraction(0.59))

    expected_substance = Substance()
    expected_substance.add_component(Component("O"), MoleFraction(0.4))
    expected_substance.add_component(Component("C"), MoleFraction(0.6))

    substances.append((input_substance, expected_substance))

    input_substance = Substance()
    input_substance.add_component(Component("O"), MoleFraction(0.59))
    input_substance.add_component(Component("C"), MoleFraction(0.41))

    expected_substance = Substance()
    expected_substance.add_component(Component("O"), MoleFraction(0.6))
    expected_substance.add_component(Component("C"), MoleFraction(0.4))

    substances.append((input_substance, expected_substance))

    return substances
Esempio n. 8
0
def test_duplicate_simulation_data_storage(reverse_order):

    substance = Substance.from_components("CO")

    with tempfile.TemporaryDirectory() as base_directory_path:

        storage_directory = os.path.join(base_directory_path, "storage")
        local_storage = LocalFileStorage(storage_directory)

        # Construct some data to store with increasing
        # statistical inefficiencies.
        data_to_store = []

        for index in range(3):

            data_directory = os.path.join(base_directory_path, f"data_{index}")
            coordinate_name = f"data_{index}.pdb"

            data_object = create_dummy_simulation_data(
                directory_path=data_directory,
                substance=substance,
                force_field_id="ff_id_1",
                coordinate_file_name=coordinate_name,
                statistical_inefficiency=float(index),
                calculation_id="id",
            )
            data_to_store.append((data_object, data_directory))

        # Keep a track of the storage keys.
        all_storage_keys = set()

        iterator = enumerate(data_to_store)

        if reverse_order:
            iterator = reversed(list(iterator))

        # Store the data
        for index, data in iterator:

            data_object, data_directory = data

            storage_key = local_storage.store_object(data_object,
                                                     data_directory)
            all_storage_keys.add(storage_key)

            retrieved_object, stored_directory = local_storage.retrieve_object(
                storage_key)

            # Handle the case where we haven't reversed the order of
            # the data to store. Here only the first object in the list
            # should be stored an never replaced as it has the lowest
            # statistical inefficiency.
            if not reverse_order:
                expected_index = 0
            # Handle the case where we have reversed the order of
            # the data to store. Here only the each new piece of
            # data should replace the last, as it will have a lower
            # statistical inefficiency.
            else:
                expected_index = index

            assert retrieved_object.json(
            ) == data_to_store[expected_index][0].json()

            # Make sure the directory has been correctly overwritten / retained
            # depending on the data order.
            coordinate_path = os.path.join(stored_directory,
                                           f"data_{expected_index}.pdb")
            assert os.path.isfile(coordinate_path)

        # Make sure all pieces of data got assigned the same key if
        # reverse order.
        assert len(all_storage_keys) == 1
Esempio n. 9
0
def test_density_dielectric_merging(workflow_merge_function):

    substance = Substance.from_components("C")

    density = evaluator.properties.Density(
        thermodynamic_state=ThermodynamicState(
            temperature=298 * unit.kelvin, pressure=1 * unit.atmosphere
        ),
        phase=PropertyPhase.Liquid,
        substance=substance,
        value=10 * unit.gram / unit.mole,
        uncertainty=1 * unit.gram / unit.mole,
    )

    dielectric = evaluator.properties.DielectricConstant(
        thermodynamic_state=ThermodynamicState(
            temperature=298 * unit.kelvin, pressure=1 * unit.atmosphere
        ),
        phase=PropertyPhase.Liquid,
        substance=substance,
        value=10 * unit.gram / unit.mole,
        uncertainty=1 * unit.gram / unit.mole,
    )

    density_schema = density.default_simulation_schema().workflow_schema
    dielectric_schema = dielectric.default_simulation_schema().workflow_schema

    density_metadata = Workflow.generate_default_metadata(
        density, "smirnoff99Frosst-1.1.0.offxml", []
    )

    dielectric_metadata = Workflow.generate_default_metadata(
        density, "smirnoff99Frosst-1.1.0.offxml", []
    )

    density_workflow = Workflow(density_metadata)
    density_workflow.schema = density_schema

    dielectric_workflow = Workflow(dielectric_metadata)
    dielectric_workflow.schema = dielectric_schema

    workflow_merge_function(density_workflow, dielectric_workflow)

    density_workflow_graph = density_workflow.to_graph()
    dielectric_workflow_graph = dielectric_workflow.to_graph()

    dependants_graph_a = density_workflow_graph._protocol_graph._build_dependants_graph(
        density_workflow_graph.protocols, False, apply_reduction=True
    )
    dependants_graph_b = dielectric_workflow_graph._protocol_graph._build_dependants_graph(
        dielectric_workflow_graph.protocols, False, apply_reduction=True
    )

    merge_order_a = graph.topological_sort(dependants_graph_a)
    merge_order_b = graph.topological_sort(dependants_graph_b)

    for protocol_id_A, protocol_id_B in zip(merge_order_a, merge_order_b):

        if (
            protocol_id_A.find("extract_traj") < 0
            and protocol_id_A.find("extract_stats") < 0
        ):

            assert (
                density_workflow.protocols[protocol_id_A].schema.json()
                == dielectric_workflow.protocols[protocol_id_B].schema.json()
            )

        else:

            assert (
                density_workflow.protocols[protocol_id_A].schema.json()
                != dielectric_workflow.protocols[protocol_id_B].schema.json()
            )
def test_substance_len():

    substance = Substance.from_components("C", "CC", "CCC", "CCC")
    assert len(substance) == 3
Esempio n. 11
0
    def generate_default_metadata(
        physical_property,
        force_field_path,
        parameter_gradient_keys=None,
        target_uncertainty=None,
    ):
        """Generates the default global metadata dictionary.

        Parameters
        ----------
        physical_property: PhysicalProperty
            The physical property whose arguments are available in the
            global scope.
        force_field_path: str
            The path to the force field parameters to use in the workflow.
        parameter_gradient_keys: list of ParameterGradientKey
                A list of references to all of the parameters which all observables
                should be differentiated with respect to.
        target_uncertainty: pint.Quantity, optional
            The uncertainty which the property should be estimated to
            within.

        Returns
        -------
        dict of str, Any

            The metadata dictionary, with the following
            keys / types:

            - thermodynamic_state: `ThermodynamicState` - The state (T,p) at which the
                                                          property is being computed
            - substance: `Substance` - The composition of the system of interest.
            - components: list of `Substance` - The components present in the system for
                                              which the property is being estimated.
            - target_uncertainty: pint.Quantity - The target uncertainty with which
                                                        properties should be estimated.
            - per_component_uncertainty: pint.Quantity - The target uncertainty divided
                                                               by the sqrt of the number of
                                                               components in the system + 1
            - force_field_path: str - A path to the force field parameters with which the
                                      property should be evaluated with.
            - parameter_gradient_keys: list of ParameterGradientKey - A list of references to all of the
                                                                      parameters which all observables
                                                                      should be differentiated with respect to.
        """
        components = []

        for component in physical_property.substance.components:

            component_substance = Substance.from_components(component)
            components.append(component_substance)

        if target_uncertainty is None:
            target_uncertainty = math.inf * physical_property.value.units

        target_uncertainty = target_uncertainty.to(
            physical_property.value.units)

        # +1 comes from inclusion of the full mixture as a possible component.
        per_component_uncertainty = target_uncertainty / sqrt(
            physical_property.substance.number_of_components + 1)

        # Find only those gradient keys which will actually be relevant to the
        # property of interest
        relevant_gradient_keys = Workflow._find_relevant_gradient_keys(
            physical_property.substance, force_field_path,
            parameter_gradient_keys)

        # Define a dictionary of accessible 'global' properties.
        global_metadata = {
            "thermodynamic_state": physical_property.thermodynamic_state,
            "substance": physical_property.substance,
            "components": components,
            "target_uncertainty": target_uncertainty,
            "per_component_uncertainty": per_component_uncertainty,
            "force_field_path": force_field_path,
            "parameter_gradient_keys": relevant_gradient_keys,
        }

        # Include the properties metadata
        if physical_property.metadata != UNDEFINED:
            global_metadata.update(physical_property.metadata)

        return global_metadata
Esempio n. 12
0
def test_storage_retrieval():
    # Create some dummy properties
    methane = Substance.from_components("C")
    methanol = Substance.from_components("CO")
    mixture = Substance.from_components("C", "CO")
    # Add extra unused data to make sure the wrong data isn't
    # Being retrieved.
    unused_pure = Substance.from_components("CCO")
    unused_mixture = Substance.from_components("CCO", "CO")

    data_to_store = [
        (methane, PropertyPhase.Liquid, 1000),
        (methanol, PropertyPhase.Liquid, 1000),
        (methanol, PropertyPhase.Gas, 1),
        (mixture, PropertyPhase.Liquid, 1000),
        (unused_pure, PropertyPhase.Liquid, 1000),
        (unused_mixture, PropertyPhase.Liquid, 1000),
    ]
    storage_keys = {}

    state = ThermodynamicState(temperature=1.0 * unit.kelvin)

    properties = [
        # Properties with a full system query.
        Density(
            value=1.0 * unit.gram / unit.litre,
            substance=methanol,
            thermodynamic_state=state,
        ),
        DielectricConstant(
            value=1.0 * unit.dimensionless, substance=methane, thermodynamic_state=state
        ),
        # Properties with a multi-component query.
        EnthalpyOfVaporization(
            value=1.0 * unit.joule / unit.mole,
            substance=methanol,
            thermodynamic_state=state,
        ),
        # Property with a multi-phase query.
        EnthalpyOfMixing(
            value=1.0 * unit.joule / unit.mole,
            substance=mixture,
            thermodynamic_state=state,
        ),
        ExcessMolarVolume(
            value=1.0 * unit.meter ** 3, substance=mixture, thermodynamic_state=state
        ),
    ]
    expected_data_per_property = {
        Density: {"full_system_data": [(methanol, PropertyPhase.Liquid, 1000)]},
        DielectricConstant: {
            "full_system_data": [(methane, PropertyPhase.Liquid, 1000)]
        },
        EnthalpyOfVaporization: {
            "liquid_data": [(methanol, PropertyPhase.Liquid, 1000)],
            "gas_data": [(methanol, PropertyPhase.Gas, 1)],
        },
        EnthalpyOfMixing: {
            "full_system_data": [(mixture, PropertyPhase.Liquid, 1000)],
            "component_data": [
                [(methane, PropertyPhase.Liquid, 1000)],
                [(methanol, PropertyPhase.Liquid, 1000)],
            ],
        },
        ExcessMolarVolume: {
            "full_system_data": [(mixture, PropertyPhase.Liquid, 1000)],
            "component_data": [
                [(methane, PropertyPhase.Liquid, 1000)],
                [(methanol, PropertyPhase.Liquid, 1000)],
            ],
        },
    }

    force_field = SmirnoffForceFieldSource.from_path("smirnoff99Frosst-1.1.0.offxml")

    with tempfile.TemporaryDirectory() as base_directory:

        # Create a storage backend with some dummy data.
        backend_directory = os.path.join(base_directory, "storage_dir")
        storage_backend = LocalFileStorage(backend_directory)

        force_field_id = storage_backend.store_force_field(force_field)

        for substance, phase, n_mol in data_to_store:

            data_directory = os.path.join(base_directory, substance.identifier)
            data = create_dummy_simulation_data(
                data_directory,
                substance=substance,
                force_field_id=force_field_id,
                phase=phase,
                number_of_molecules=n_mol,
            )
            storage_key = storage_backend.store_object(data, data_directory)
            storage_keys[(substance, phase, n_mol)] = storage_key

        for physical_property in properties:

            schema = registered_calculation_schemas["ReweightingLayer"][
                physical_property.__class__.__name__
            ]

            if callable(schema):
                schema = schema()

            # noinspection PyProtectedMember
            metadata = ReweightingLayer._get_workflow_metadata(
                base_directory, physical_property, "", [], storage_backend, schema,
            )

            assert metadata is not None

            expected_data_list = expected_data_per_property[physical_property.__class__]

            for data_key in expected_data_list:

                assert data_key in metadata

                stored_metadata = metadata[data_key]
                expected_metadata = expected_data_list[data_key]

                assert len(stored_metadata) == len(expected_metadata)

                if isinstance(stored_metadata[0], list):
                    # Flatten any lists of lists.
                    stored_metadata = [
                        item for sublist in stored_metadata for item in sublist
                    ]
                    expected_metadata = [
                        item for sublist in expected_metadata for item in sublist
                    ]

                metadata_storage_keys = [
                    os.path.basename(x) for x, _, _ in stored_metadata
                ]
                expected_storage_keys = [storage_keys[x] for x in expected_metadata]

                assert sorted(metadata_storage_keys) == sorted(expected_storage_keys)
Esempio n. 13
0
def test_to_pandas():
    """A test to ensure that data sets are convertable to pandas objects."""

    source = CalculationSource("Dummy", {})

    pure_substance = Substance.from_components("C")
    binary_substance = Substance.from_components("C", "O")

    data_set = PhysicalPropertyDataSet()

    for temperature in [
            298 * unit.kelvin, 300 * unit.kelvin, 302 * unit.kelvin
    ]:

        thermodynamic_state = ThermodynamicState(temperature=temperature,
                                                 pressure=1.0 *
                                                 unit.atmosphere)

        density_property = Density(
            thermodynamic_state=thermodynamic_state,
            phase=PropertyPhase.Liquid,
            substance=pure_substance,
            value=1 * unit.gram / unit.milliliter,
            uncertainty=0.11 * unit.gram / unit.milliliter,
            source=source,
        )

        dielectric_property = DielectricConstant(
            thermodynamic_state=thermodynamic_state,
            phase=PropertyPhase.Liquid,
            substance=pure_substance,
            value=1 * unit.dimensionless,
            uncertainty=0.11 * unit.dimensionless,
            source=source,
        )

        data_set.add_properties(density_property)
        data_set.add_properties(dielectric_property)

    for temperature in [
            298 * unit.kelvin, 300 * unit.kelvin, 302 * unit.kelvin
    ]:

        thermodynamic_state = ThermodynamicState(temperature=temperature,
                                                 pressure=1.0 *
                                                 unit.atmosphere)

        enthalpy_property = EnthalpyOfMixing(
            thermodynamic_state=thermodynamic_state,
            phase=PropertyPhase.Liquid,
            substance=binary_substance,
            value=1 * unit.kilojoules / unit.mole,
            uncertainty=0.11 * unit.kilojoules / unit.mole,
            source=source,
        )

        excess_property = ExcessMolarVolume(
            thermodynamic_state=thermodynamic_state,
            phase=PropertyPhase.Liquid,
            substance=binary_substance,
            value=1 * unit.meter**3 / unit.mole,
            uncertainty=0.11 * unit.meter**3 / unit.mole,
            source=source,
        )

        data_set.add_properties(enthalpy_property)
        data_set.add_properties(excess_property)

    data_set_pandas = data_set.to_pandas()

    required_columns = [
        "Temperature (K)",
        "Pressure (kPa)",
        "Phase",
        "N Components",
        "Source",
        "Component 1",
        "Role 1",
        "Mole Fraction 1",
        "Exact Amount 1",
        "Component 2",
        "Role 2",
        "Mole Fraction 2",
        "Exact Amount 2",
    ]

    assert all(x in data_set_pandas for x in required_columns)

    assert data_set_pandas is not None
    assert data_set_pandas.shape == (12, 21)

    data_set_without_na = data_set_pandas.dropna(axis=1, how="all")
    assert data_set_without_na.shape == (12, 19)
Esempio n. 14
0
def test_build_ligpargen_system(requests_mock):

    force_field_source = LigParGenForceFieldSource(
        request_url="http://testligpargen.com/request",
        download_url="http://testligpargen.com/download",
    )

    substance = Substance.from_components("C", "O")

    def request_callback(request, context):
        context.status_code = 200
        smiles = re.search(r'"smiData"\r\n\r\n(.*?)\r\n',
                           request.text).group(1)

        cmiles_molecule = load_molecule(smiles, toolkit="rdkit")
        smiles = mol_to_smiles(cmiles_molecule,
                               isomeric=False,
                               explicit_hydrogen=False,
                               mapped=False)

        assert smiles == "C"
        return 'value="/tmp/0000.xml"'

    def download_callback(_, context):
        context.status_code = 200
        return """
<ForceField>
<AtomTypes>
<Type name="opls_802" class="H802" element="H" mass="1.008000" />
<Type name="opls_804" class="H804" element="H" mass="1.008000" />
<Type name="opls_803" class="H803" element="H" mass="1.008000" />
<Type name="opls_800" class="C800" element="C" mass="12.011000" />
<Type name="opls_801" class="H801" element="H" mass="1.008000" />
</AtomTypes>
<Residues>
<Residue name="UNK">
<Atom name="C00" type="opls_800" />
<Atom name="H01" type="opls_801" />
<Atom name="H02" type="opls_802" />
<Atom name="H03" type="opls_803" />
<Atom name="H04" type="opls_804" />
<Bond from="0" to="1"/>
<Bond from="0" to="2"/>
<Bond from="0" to="3"/>
<Bond from="0" to="4"/>
</Residue>
</Residues>
<HarmonicBondForce>
<Bond class1="H801" class2="C800" length="0.109000" k="284512.000000"/>
<Bond class1="H802" class2="C800" length="0.109000" k="284512.000000"/>
<Bond class1="H803" class2="C800" length="0.109000" k="284512.000000"/>
<Bond class1="H804" class2="C800" length="0.109000" k="284512.000000"/>
</HarmonicBondForce>
<HarmonicAngleForce>
<Angle class1="H801" class2="C800" class3="H802" angle="1.881465" k="276.144000"/>
<Angle class1="H801" class2="C800" class3="H803" angle="1.881465" k="276.144000"/>
<Angle class1="H801" class2="C800" class3="H804" angle="1.881465" k="276.144000"/>
<Angle class1="H802" class2="C800" class3="H803" angle="1.881465" k="276.144000"/>
<Angle class1="H803" class2="C800" class3="H804" angle="1.881465" k="276.144000"/>
<Angle class1="H802" class2="C800" class3="H804" angle="1.881465" k="276.144000"/>
</HarmonicAngleForce>
<PeriodicTorsionForce>
<Improper class1="C800" class2="H801" class3="H802" class4="H803" k1="0.000000" k2="0.000000" k3="0.000000"
k4="0.000000" periodicity1="1" periodicity2="2" periodicity3="3" periodicity4="4" phase1="0.00"
phase2="3.141592653589793" phase3="0.00" phase4="3.141592653589793"/>
<Improper class1="C800" class2="H801" class3="H802" class4="H804" k1="0.000000" k2="0.000000" k3="0.000000"
k4="0.000000" periodicity1="1" periodicity2="2" periodicity3="3" periodicity4="4" phase1="0.00"
phase2="3.141592653589793" phase3="0.00" phase4="3.141592653589793"/>
</PeriodicTorsionForce>
<NonbondedForce coulomb14scale="0.5" lj14scale="0.5">
<Atom type="opls_803" charge="0.074800" sigma="0.250000" epsilon="0.125520" />
<Atom type="opls_802" charge="0.074800" sigma="0.250000" epsilon="0.125520" />
<Atom type="opls_800" charge="-0.299400" sigma="0.350000" epsilon="0.276144" />
<Atom type="opls_804" charge="0.074800" sigma="0.250000" epsilon="0.125520" />
<Atom type="opls_801" charge="0.074800" sigma="0.250000" epsilon="0.125520" />
</NonbondedForce>
</ForceField>
"""

    requests_mock.post(force_field_source.request_url, text=request_callback)
    requests_mock.post(force_field_source.download_url, text=download_callback)

    with tempfile.TemporaryDirectory() as directory:

        force_field_path = path.join(directory, "ff.json")

        with open(force_field_path, "w") as file:
            file.write(force_field_source.json())

        build_coordinates = BuildCoordinatesPackmol("build_coordinates")
        build_coordinates.max_molecules = 8
        build_coordinates.substance = substance
        build_coordinates.execute(directory, None)

        assign_parameters = BuildLigParGenSystem(f"assign_parameters")
        assign_parameters.force_field_path = force_field_path
        assign_parameters.coordinate_file_path = build_coordinates.coordinate_file_path
        assign_parameters.substance = substance
        assign_parameters.execute(directory, None)
        assert path.isfile(assign_parameters.system_path)