Esempio n. 1
0
def demo(n):
    print(markov(n, tokenize_text(get_example_text())))
Esempio n. 2
0
def print_example_model(n):
    print(repr(NgramModel(n, tokenize_text(get_example_text())).nexttokens))
Esempio n. 3
0
 def test_markov(self):
     chain = ex2_markov.markov(1, ex2.tokenize_text(ex2.get_example_text()))
     self.assertEqual(54, len(chain.split(' ')))
     self.assertTrue(chain.startswith('E m m a '))
Esempio n. 4
0
import random

from ex2 import get_example_text, tokenize_text
from ex3_markov import NgramModel
from ex3_poem import is_known_word, words_rhyme


MODEL = NgramModel(1, tokenize_text(get_example_text()))


def random_walk_of_indexes(list_):
    walk = list(range(len(list_)))
    random.shuffle(walk)
    return walk


def get_matching_word(words, indexes, predicate=lambda w: True):
    while indexes:
        i = indexes.pop()
        word = words[i]
        if is_known_word(word) and predicate(word):
            return i, word
    raise ValueError("No matching word found")


def gen_two_rhyming_lines():
    words = [w.lower() for w in MODEL.generate(1000) if w.isalpha()]
    walk = random_walk_of_indexes(words)
    i1, last1 = get_matching_word(words, walk)
    i2, last2 = get_matching_word(words, walk, lambda w: words_rhyme(last1, w))
    n1 = random.randrange(3,5+1)
Esempio n. 5
0
 def test_get_example_text(self):
     text = ex2.get_example_text()
     first_line = text.splitlines()[0]
     self.assertEqual(
         first_line, "The Project Gutenberg EBook of Emma, by Jane Austen")