Esempio n. 1
0
def create_catch_dataset(request):
    download_path.mkdir(parents=True, exist_ok=True)

    # If this is a POST request then process the Form data
    if request.method == 'POST':

        # Create a form instance and populate it with data from the request (binding):
        new_form = CATCH_DatasetForm(request.POST)

        # Check if the form is valid:
        if new_form.is_valid():
            errors = []
            team = get_object_or_404(Team, id=new_form.data['team'])
            image_set_name = new_form.data["name"]
            product_name = "Skin Tissue Types"

            # create imageset, product and annotation type etc.
            with transaction.atomic():
                labels = {
                    'Bone': None,
                    'Cartilage': None,
                    'Dermis': None,
                    'Epidermis': None,
                    'Subcutis': None,
                    'Inflamm/Necrosis': None,
                    'Melanoma': None,
                    'Plasmacytoma': None,
                    'Mast Cell Tumor': None,
                    'PNST': None,
                    'SCC': None,
                    'Trichoblastoma': None,
                    'Histiocytoma': None
                }

                # create or load product
                product = Product.objects.filter(name=product_name,
                                                 team=team).first()
                if product is None:
                    product = Product.objects.create(name=product_name,
                                                     team=team,
                                                     creator=request.user)

                # create or load AnnotationType
                for label, code in zip(labels.keys(), [
                        "#808000", "#008000", "#0000FF", "#00FFFF", "#FF0000",
                        "#FF00FF", "#FF8800", "#FFFF00", "#00FF00", "#A52A2A",
                        "#ADD8E6", "#00008B", "#800080"
                ]):
                    anno_type = AnnotationType.objects.filter(
                        name=label, product=product).first()
                    if anno_type is None:
                        anno_type = AnnotationType.objects.create(
                            name=label,
                            vector_type=5,
                            product=product,
                            color_code=code)

                    labels[label] = anno_type

                # create imageset
                image_set = ImageSet.objects.filter(name=image_set_name,
                                                    team=team).first()
                if image_set is None:
                    image_set = ImageSet.objects.create(
                        team=team,
                        creator=request.user,
                        name=image_set_name,
                    )
                    image_set.product_set.add(product)
                    image_set.create_folder()
                    image_set.save()

                annotations_path = download_path / "annotations.json"
                url = 'https://wiki.cancerimagingarchive.net/download/attachments/101941773/CATCH.json?version=1&modificationDate=1641393368399&api=v2'
                gdown.download(url,
                               str(annotations_path),
                               quiet=True,
                               proxy=new_form.data["proxy"])

                rows = []
                with open(annotations_path) as f:
                    data = json.load(f)
                    categories = {
                        cat["id"]: cat["name"]
                        for cat in data["categories"]
                    }
                    for row in data["images"]:
                        file_name = row["file_name"]
                        image_id = row["id"]
                        width = row["width"]
                        height = row["height"]
                        for annotation in [
                                anno for anno in data['annotations']
                                if anno["image_id"] == image_id
                        ]:
                            polygon = annotation["segmentation"]
                            cat = categories[annotation["category_id"]]
                            rows.append([
                                file_name, image_id, width, height, polygon,
                                cat
                            ])

                df = pd.DataFrame(rows,
                                  columns=[
                                      "file_name", "image_id", "width",
                                      "height", "polygon", "cat"
                                  ])

                for f in request.FILES.getlist('images'):
                    old_filename = Path(f.file.name)
                    new_filename = Path(image_set.root_path()) / f._name
                    copy(old_filename, new_filename)
                    image = Image.objects.filter(filename=f._name,
                                                 image_set=image_set).first()

                    if image is None:
                        try:
                            # creates a checksum for image
                            fchecksum = hashlib.sha512()
                            with open(new_filename, 'rb') as fil:
                                buf = fil.read(10000)
                                fchecksum.update(buf)
                            fchecksum = fchecksum.digest()

                            image = Image(name=f._name,
                                          image_set=image_set,
                                          checksum=fchecksum)

                            image.save_file(new_filename)
                            imageDf = df[df["file_name"] == f._name]
                            for label, vector in zip(imageDf['cat'],
                                                     imageDf['polygon']):
                                if label in labels:
                                    result_dict = {}
                                    index = 1
                                    vector = np.array(vector).reshape((-1, 2))
                                    for x, y in vector:
                                        result_dict['x{}'.format(index)] = int(
                                            x)
                                        result_dict['y{}'.format(index)] = int(
                                            y)
                                        index += 1
                                    annotation_type = labels[label]
                                    anno = Annotation.objects.create(
                                        annotation_type=annotation_type,
                                        user=request.user,
                                        image=image,
                                        vector=result_dict)
                        except Exception as e:
                            errors.append(e.message)

            if image_set is not None:
                # view last created image set
                return view_imageset(request, image_set.id)

    # If this is a GET (or any other method) create the default form.
    form = CATCH_DatasetForm(user=request.user)

    context = {
        'catch_form': form,
    }

    return TemplateResponse(request, 'catch.html', context)
Esempio n. 2
0
def create_eiph_dataset(request):

    # If this is a POST request then process the Form data
    if request.method == 'POST':

        # Create a form instance and populate it with data from the request (binding):
        form = DatasetForm(request.POST)

        # Check if the form is valid:
        if form.is_valid():
            team = get_object_or_404(Team, id=form.data['team'])
            image_set_name = form.data["name"]
            product_name = form.data["name"] + " Product"

            url = 'https://drive.google.com/uc?id='
            annotations_path = download_path / "05_EIPH_BerlinerBalu.txt"
            gdown.download(url,
                           str(annotations_path),
                           quiet=True,
                           proxy=form.data["proxy"])

            # create imageset, product and annotation type etc.
            with transaction.atomic():
                labels = {
                    '0': None,
                    "1": None,
                    "2": None,
                    "3": None,
                    "4": None
                }

                annotations = pd.read_csv(annotations_path,
                                          delimiter="|",
                                          names=["file", "class", "vector"])

                # create or load product
                product = Product.objects.filter(name=product_name,
                                                 team=team).first()
                if product is None:
                    product = Product.objects.create(name=product_name,
                                                     team=team,
                                                     creator=request.user)
                    product.save()

                # create or load AnnotationType
                for label in labels.keys():
                    anno_type = AnnotationType.objects.filter(
                        name=label, product=product).first()
                    if anno_type is None:
                        anno_type = AnnotationType.objects.create(
                            name=label, vector_type=1, product=product)

                    labels[label] = anno_type

                #create imageset
                image_set = ImageSet.objects.filter(name=image_set_name,
                                                    team=team).first()
                if image_set is None:
                    image_set = ImageSet.objects.create(team=team,
                                                        creator=request.user,
                                                        name=image_set_name,
                                                        product=[product])
                    image_set.create_folder()

                #create images

                url = 'https://drive.google.com/uc?id=1N0tOpj-tVnTHkQIp15lSxn7HZbGJQ_qQ'

                file_path = Path(image_set.root_path()
                                 ) / "26_EIPH_566482 L Berliner Blau.svs"
                gdown.download(url,
                               str(file_path),
                               quiet=True,
                               proxy=form.data["proxy"])

                image = Image.objects.filter(filename=file_path.name,
                                             image_set=image_set).first()
                if image is None:
                    try:
                        # creates a checksum for image
                        fchecksum = hashlib.sha512()
                        with open(file_path, 'rb') as fil:
                            buf = fil.read(10000)
                            fchecksum.update(buf)
                        fchecksum = fchecksum.digest()

                        image = Image(name=file_path.name,
                                      image_set=image_set,
                                      checksum=fchecksum)

                        image.save_file(file_path)

                        # save annotations for image
                        for label, vector in zip(annotations["class"],
                                                 annotations["vector"]):

                            vector = json.loads(vector)
                            annotation_type = labels[str(label)]
                            anno = Annotation.objects.create(
                                annotation_type=annotation_type,
                                user=request.user,
                                image=image,
                                vector=vector)

                    except Exception as e:
                        errors.append(e.message)

            # view image set
            return view_imageset(request, image_set.id)

    # If this is a GET (or any other method) create the default form.
    form = DatasetForm(user=request.user)

    context = {
        'asthma_form': form,
    }

    return TemplateResponse(request, 'dataset_asthma.html', context)
Esempio n. 3
0
def create_mitos_wsi_cmc_dataset(request):
    download_path.mkdir(parents=True, exist_ok=True)

    # If this is a POST request then process the Form data
    if request.method == 'POST':

        # Create a form instance and populate it with data from the request (binding):
        new_form = MITOS_WSI_CMCDatasetForm(request.POST)

        # Check if the form is valid:
        if new_form.is_valid():
            files = new_form.cleaned_data["files"]
            errors = []
            team = get_object_or_404(Team, id=new_form.data['team'])
            image_set_name = new_form.data["name"]
            product_name = new_form.data["name"] + " Product"

            # create imageset, product and annotation type etc.
            with transaction.atomic():
                labels = {
                    'Mitotic cell look-alike': None,
                    "Mitotic figure": None
                }

                # create or load product
                product = Product.objects.filter(name=product_name,
                                                 team=team).first()
                if product is None:
                    product = Product.objects.create(name=product_name,
                                                     team=team,
                                                     creator=request.user)

                # create or load AnnotationType
                for label, code in zip(labels.keys(), ["#21ff22", "#0000ef"]):
                    anno_type = AnnotationType.objects.filter(
                        name=label, product=product).first()
                    if anno_type is None:
                        anno_type = AnnotationType.objects.create(
                            name=label,
                            vector_type=1,
                            product=product,
                            color_code=code)

                    labels[label] = anno_type

                #create imageset
                image_set = ImageSet.objects.filter(name=image_set_name,
                                                    team=team).first()
                if image_set is None:
                    image_set = ImageSet.objects.create(
                        team=team,
                        creator=request.user,
                        name=image_set_name,
                    )
                    image_set.product_set.add(product)
                    image_set.create_folder()
                    image_set.save()

                #create images

                url = new_form.data["database"]
                annotations_path = download_path / "MITOS_WSI_CMC_MEL.txt"
                gdown.download(url,
                               str(annotations_path),
                               quiet=True,
                               proxy=new_form.data["proxy"])

                annotations = pd.read_csv(annotations_path, delimiter="|")

                for url in files:

                    file_name = [
                        url_name[1] for url_name in new_form.FILE_CHOICES
                        if url_name[0] == url
                    ][0]
                    file_path = Path(
                        image_set.root_path()) / "{0}.svs".format(file_name)

                    urllib.request.urlretrieve(url, str(file_path))

                    image = Image.objects.filter(filename=file_path.name,
                                                 image_set=image_set).first()
                    if image is None:
                        try:
                            # creates a checksum for image
                            fchecksum = hashlib.sha512()
                            with open(file_path, 'rb') as fil:
                                buf = fil.read(10000)
                                fchecksum.update(buf)
                            fchecksum = fchecksum.digest()

                            image = Image(name=file_path.name,
                                          image_set=image_set,
                                          checksum=fchecksum)

                            image.save_file(file_path)

                            image_annotations = annotations[annotations["file"]
                                                            == file_path.name]

                            # save annotations for image
                            for label, vector in zip(
                                    image_annotations["class"],
                                    image_annotations["vector"]):

                                if label in labels:
                                    vector = json.loads(
                                        vector.replace("'", "\""))
                                    vector["x1"], vector["x2"], vector[
                                        "y1"], vector["y2"] = int(
                                            vector["x1"]), int(
                                                vector["x2"]), int(
                                                    vector["y1"]), int(
                                                        vector["y2"])
                                    annotation_type = labels[label]
                                    anno = Annotation.objects.create(
                                        annotation_type=annotation_type,
                                        user=request.user,
                                        image=image,
                                        vector=vector)

                        except Exception as e:
                            errors.append(e.message)

            # view image set
            return view_imageset(request, image_set.id)

    # If this is a GET (or any other method) create the default form.
    form = MITOS_WSI_CMCDatasetForm(user=request.user)

    context = {
        'mitos_wsi_cmc_form': form,
    }

    return TemplateResponse(request, 'mitos_wsi_cmc_form.html', context)
Esempio n. 4
0
def create_asthma_dataset(request):
    download_path.mkdir(parents=True, exist_ok=True)

    # If this is a POST request then process the Form data
    if request.method == 'POST':

        # Create a form instance and populate it with data from the request (binding):
        form = DatasetForm(request.POST)

        # Check if the form is valid:
        if form.is_valid():
            team = get_object_or_404(Team, id=form.data['team'])
            image_set_name = form.data["name"]
            product_name = form.data["name"] + " Product"

            url = 'https://drive.google.com/uc?id=1_w_AcWa54yj1Ye4H4loEfBtgl4hvQFSp'
            annotations_path = download_path / "Asthma_Annotations.pkl"
            gdown.download(url,
                           str(annotations_path),
                           quiet=True,
                           proxy=form.data["proxy"])

            # create imageset, product and annotation type etc.
            with transaction.atomic():
                labels = {
                    'Mastzellen': None,
                    "Makrophagen": None,
                    "Neutrophile": None,
                    "Eosinophile": None,
                    "Lymohozyten": None
                }

                annotations = pd.read_pickle(annotations_path)
                annotations = annotations[annotations["deleted"] == False]
                annotations = annotations[annotations["class"].isin(
                    labels.keys())]

                # create or load product
                product = Product.objects.filter(name=product_name,
                                                 team=team).first()
                if product is None:
                    product = Product.objects.create(name=product_name,
                                                     team=team,
                                                     creator=request.user)
                    product.save()

                # create or load AnnotationType
                for label in labels.keys():
                    anno_type = AnnotationType.objects.filter(
                        name=label, product=product).first()
                    if anno_type is None:
                        anno_type = AnnotationType.objects.create(
                            name=label, vector_type=1, product=product)

                    labels[label] = anno_type

                #create imageset
                image_set = ImageSet.objects.filter(name=image_set_name,
                                                    team=team).first()
                if image_set is None:
                    image_set = ImageSet.objects.create(team=team,
                                                        creator=request.user,
                                                        name=image_set_name,
                                                        product=[product])
                    image_set.create_folder()

                #create images

                url = 'https://drive.google.com/uc?id='

                file_path = Path(
                    image_set.root_path()) / "BAL AIA Blickfang Luft.svs"
                gdown.download(url,
                               str(file_path),
                               quiet=True,
                               proxy=form.data["proxy"])

                image = Image.objects.filter(filename=file_path.name,
                                             image_set=image_set).first()
                if image is None:
                    try:
                        # creates a checksum for image
                        fchecksum = hashlib.sha512()
                        with open(file_path, 'rb') as fil:
                            buf = fil.read(10000)
                            fchecksum.update(buf)
                        fchecksum = fchecksum.digest()

                        image = Image(name=file_path.name,
                                      image_set=image_set,
                                      checksum=fchecksum)

                        image.save_file(file_path)

                        annotations = annotations[annotations["image_name"] ==
                                                  file_path.name]

                        # save annotations for image
                        for label, vector, uuid in zip(
                                annotations["class"], annotations["vector"],
                                annotations["unique_identifier"]):

                            annotation_type = labels[label]
                            anno = Annotation.objects.filter(
                                unique_identifier=uuid, image=image).first()
                            if anno is None:
                                anno = Annotation.objects.create(
                                    annotation_type=annotation_type,
                                    unique_identifier=uuid,
                                    user=request.user,
                                    image=image,
                                    vector=vector)

                    except Exception as e:
                        errors.append(e.message)

            # view image set
            return view_imageset(request, image_set.id)

    # If this is a GET (or any other method) create the default form.
    form = DatasetForm(user=request.user)

    context = {
        'asthma_form': form,
    }

    return TemplateResponse(request, 'dataset_asthma.html', context)
Esempio n. 5
0
def create_miccai_eiph_dataset(request):
    download_path.mkdir(parents=True, exist_ok=True)

    # If this is a POST request then process the Form data
    if request.method == 'POST':

        # Create a form instance and populate it with data from the request (binding):
        form = DatasetForm(request.POST)

        # Check if the form is valid:
        if form.is_valid():
            errors = []
            team = get_object_or_404(Team, id=form.data['team'])
            image_set_name = form.data["name"]
            product_name = form.data["name"] + " Product"

            # create imageset, product and annotation type etc.
            with transaction.atomic():
                labels = {
                    '0': None,
                    "1": None,
                    "2": None,
                    "3": None,
                    "4": None
                }

                # create or load product
                product = Product.objects.filter(name=product_name,
                                                 team=team).first()
                if product is None:
                    product = Product.objects.create(name=product_name,
                                                     team=team,
                                                     creator=request.user)

                # create or load AnnotationType
                for label, code in zip(
                        labels.keys(),
                    ["#0000FF", "#FF00FF", "#FF0000", "#808000", "#FFFF00"]):
                    anno_type = AnnotationType.objects.filter(
                        name=label, product=product).first()
                    if anno_type is None:
                        anno_type = AnnotationType.objects.create(
                            name=label,
                            vector_type=1,
                            product=product,
                            color_code=code)

                    labels[label] = anno_type

                #create imageset
                image_set = ImageSet.objects.filter(name=image_set_name,
                                                    team=team).first()
                if image_set is None:
                    image_set = ImageSet.objects.create(
                        team=team,
                        creator=request.user,
                        name=image_set_name,
                    )
                    image_set.product_set.add(product)
                    image_set.create_folder()
                    image_set.save()

                #create images

                url = 'https://drive.google.com/uc?id=1yFjYkLbXxcsG2s8Mk8XGGmLUHPaj8jnJ'

                zip_path = Path(image_set.root_path()) / "EIPH.zip"
                gdown.download(url,
                               str(zip_path),
                               quiet=True,
                               proxy=form.data["proxy"])

                # unpack zip-file
                zip_ref = zipfile.ZipFile(str(zip_path), 'r')
                zip_ref.extractall(image_set.root_path())
                zip_ref.close()
                # delete zip-file
                os.remove(str(zip_path))

                filenames = [
                    Path(image_set.root_path()) / f.filename
                    for f in zip_ref.filelist if ".txt" not in f.filename
                ]
                annotations_path = Path(
                    image_set.root_path()) / "ground truth.txt"

                annotations = pd.read_csv(annotations_path,
                                          delimiter="|",
                                          names=[
                                              "file", "class", "vector", "1",
                                              "2", "3", "4", "5", "6", "7", "8"
                                          ])

                for file_path in filenames:
                    image = Image.objects.filter(filename=file_path.name,
                                                 image_set=image_set).first()
                    if image is None:
                        try:
                            # creates a checksum for image
                            fchecksum = hashlib.sha512()
                            with open(file_path, 'rb') as fil:
                                buf = fil.read(10000)
                                fchecksum.update(buf)
                            fchecksum = fchecksum.digest()

                            image = Image(name=file_path.name,
                                          image_set=image_set,
                                          checksum=fchecksum)

                            image.save_file(file_path)

                            image_annotations = annotations[annotations["file"]
                                                            == file_path.name]

                            # save annotations for image
                            for label, vector in zip(
                                    image_annotations["class"],
                                    image_annotations["vector"]):
                                label = str(label)
                                if label in labels:
                                    vector = json.loads(vector)
                                    vector["x1"], vector["x2"], vector[
                                        "y1"], vector["y2"] = int(
                                            vector["x1"]), int(
                                                vector["x2"]), int(
                                                    vector["y1"]), int(
                                                        vector["y2"])
                                    annotation_type = labels[label]
                                    anno = Annotation.objects.create(
                                        annotation_type=annotation_type,
                                        user=request.user,
                                        image=image,
                                        vector=vector)

                        except Exception as e:
                            errors.append(e.message)

            # view image set
            return view_imageset(request, image_set.id)

    # If this is a GET (or any other method) create the default form.
    form = DatasetForm(user=request.user)

    context = {
        'eiph_miccai_form': form,
    }

    return TemplateResponse(request, 'eiph_miccai_form.html', context)