Esempio n. 1
0
def load_world():
    # TODO: store internal world info here to be reloaded
    set_default_camera()
    draw_global_system()
    with HideOutput():
        #add_data_path()
        robot = load_model(DRAKE_IIWA_URDF, fixed_base=True) # DRAKE_IIWA_URDF | KUKA_IIWA_URDF
        floor = load_model('models/short_floor.urdf')
        sink = load_model(SINK_URDF, pose=Pose(Point(x=-0.5)))
        stove = load_model(STOVE_URDF, pose=Pose(Point(x=+0.5)))
        celery = load_model(BLOCK_URDF, fixed_base=False)
        radish = load_model(SMALL_BLOCK_URDF, fixed_base=False)
        #cup = load_model('models/dinnerware/cup/cup_small.urdf',
        # Pose(Point(x=+0.5, y=+0.5, z=0.5)), fixed_base=False)

    draw_pose(Pose(), parent=robot, parent_link=get_tool_link(robot)) # TODO: not working
    # dump_body(robot)
    # wait_for_user()

    body_names = {
        sink: 'sink',
        stove: 'stove',
        celery: 'celery',
        radish: 'radish',
    }
    movable_bodies = [celery, radish]

    set_pose(celery, Pose(Point(y=0.5, z=stable_z(celery, floor))))
    set_pose(radish, Pose(Point(y=-0.5, z=stable_z(radish, floor))))

    return robot, body_names, movable_bodies
Esempio n. 2
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-viewer', action='store_true', help='enable the viewer while planning')
    args = parser.parse_args()
    print(args)

    connect(use_gui=True)
    with LockRenderer():
        draw_pose(unit_pose(), length=1)
        floor = create_floor()
        with HideOutput():
            robot = load_pybullet(get_model_path(ROOMBA_URDF), fixed_base=True, scale=2.0)
            for link in get_all_links(robot):
                set_color(robot, link=link, color=ORANGE)
            robot_z = stable_z(robot, floor)
            set_point(robot, Point(z=robot_z))
        #set_base_conf(robot, rover_confs[i])

        data_path = add_data_path()
        shelf, = load_model(os.path.join(data_path, KIVA_SHELF_SDF), fixed_base=True) # TODO: returns a tuple
        dump_body(shelf)
        #draw_aabb(get_aabb(shelf))

    wait_for_user()
    disconnect()
Esempio n. 3
0
def load_world():
    # TODO: store internal world info here to be reloaded
    with HideOutput():
        robot = load_model(DRAKE_IIWA_URDF)
        #add_data_path()
        #robot = load_pybullet(KUKA_IIWA_URDF)
        floor = load_model('models/short_floor.urdf')
        sink = load_model(SINK_URDF, pose=Pose(Point(x=-0.5)))
        stove = load_model(STOVE_URDF, pose=Pose(Point(x=+0.5)))
        celery = load_model(BLOCK_URDF, fixed_base=False)
        radish = load_model(SMALL_BLOCK_URDF, fixed_base=False)
        #cup = load_model('models/dinnerware/cup/cup_small.urdf',
        # Pose(Point(x=+0.5, y=+0.5, z=0.5)), fixed_base=False)

    body_names = {
        sink: 'sink',
        stove: 'stove',
        celery: 'celery',
        radish: 'radish',
    }
    movable_bodies = [celery, radish]

    set_pose(celery, Pose(Point(y=0.5, z=stable_z(celery, floor))))
    set_pose(radish, Pose(Point(y=-0.5, z=stable_z(radish, floor))))
    set_default_camera()

    return robot, body_names, movable_bodies
Esempio n. 4
0
def load_world():
    root_directory = os.path.dirname(os.path.abspath(__file__))
    with HideOutput():
        floor = load_model('models/short_floor.urdf')
        robot = load_pybullet(os.path.join(root_directory, KUKA_PATH), fixed_base=True)
    set_point(floor, Point(z=-0.01))
    return floor, robot
Esempio n. 5
0
def get_kitchen_task(arm='left', grasp_type='top'):
    with HideOutput():
        pr2 = create_pr2(use_drake=USE_DRAKE_PR2)
    set_arm_conf(pr2, arm, get_carry_conf(arm, grasp_type))
    open_arm(pr2, arm)
    other_arm = get_other_arm(arm)
    set_arm_conf(pr2, other_arm, arm_conf(other_arm, REST_LEFT_ARM))
    close_arm(pr2, other_arm)

    table, cabbage, sink, stove = create_kitchen()
    floor = get_bodies()[1]
    class_from_body = {
        table: 'table',
        cabbage: 'cabbage',
        sink: 'sink',
        stove: 'stove',
    } # TODO: use for debug
    movable = [cabbage]
    surfaces = [table, sink, stove]
    rooms = [floor]

    return BeliefTask(robot=pr2, arms=[arm], grasp_types=[grasp_type],
                      class_from_body=class_from_body,
                      movable=movable, surfaces=surfaces, rooms=rooms,
                      #goal_localized=[cabbage],
                      #goal_registered=[cabbage],
                      #goal_holding=[(arm, cabbage)],
                      #goal_on=[(cabbage, table)],
                      goal_on=[(cabbage, sink)],
                      )
Esempio n. 6
0
def plan_commands(state,
                  viewer=False,
                  teleport=False,
                  profile=False,
                  verbose=True):
    # TODO: could make indices into set of bodies to ensure the same...
    # TODO: populate the bodies here from state and not the real world
    sim_world = connect(use_gui=viewer)
    #clone_world(client=sim_world)
    task = state.task
    robot_conf = get_configuration(task.robot)
    robot_pose = get_pose(task.robot)
    with ClientSaver(sim_world):
        with HideOutput():
            robot = create_pr2(use_drake=USE_DRAKE_PR2)
        set_pose(robot, robot_pose)
        set_configuration(robot, robot_conf)
    mapping = clone_world(client=sim_world, exclude=[task.robot])
    assert all(i1 == i2 for i1, i2 in mapping.items())
    set_client(sim_world)
    saved_world = WorldSaver()  # StateSaver()

    pddlstream_problem = pddlstream_from_state(state, teleport=teleport)
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', sorted(init, key=lambda f: f[0]))
    if verbose:
        print('Goal:', goal)
        print('Streams:', stream_map.keys())

    stream_info = {
        'test-vis-base': StreamInfo(eager=True, p_success=0),
        'test-reg-base': StreamInfo(eager=True, p_success=0),
    }
    hierarchy = [
        ABSTRIPSLayer(pos_pre=['AtBConf']),
    ]

    pr = cProfile.Profile()
    pr.enable()
    solution = solve_focused(pddlstream_problem,
                             stream_info=stream_info,
                             hierarchy=hierarchy,
                             debug=False,
                             success_cost=MAX_COST,
                             verbose=verbose)
    plan, cost, evaluations = solution
    if MAX_COST <= cost:
        plan = None
    print_solution(solution)
    print('Finite cost:', cost < MAX_COST)
    commands = post_process(state, plan)
    pr.disable()
    if profile:
        pstats.Stats(pr).sort_stats('cumtime').print_stats(10)
    saved_world.restore()
    disconnect()
    return commands
Esempio n. 7
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    connect(use_gui=True)
    #ycb_path = os.path.join(DRAKE_PATH, DRAKE_YCB)
    #ycb_path = os.path.join(YCB_PATH, YCB_TEMPLATE.format('003_cracker_box'))
    #print(ycb_path)
    #load_pybullet(ycb_path)

    with LockRenderer():
        draw_pose(unit_pose(), length=1, width=1)
        floor = create_floor()
        set_point(floor, Point(z=-EPSILON))
        table = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH/2, height=TABLE_WIDTH/2, top_color=TAN, cylinder=False)
        #set_euler(table, Euler(yaw=np.pi/2))
        with HideOutput(False):
            # data_path = add_data_path()
            # robot_path = os.path.join(data_path, WSG_GRIPPER)
            robot_path = get_model_path(WSG_50_URDF)  # WSG_50_URDF | PANDA_HAND_URDF
            #robot_path = get_file_path(__file__, 'mit_arch_suction_gripper/mit_arch_suction_gripper.urdf')
            robot = load_pybullet(robot_path, fixed_base=True)
            #dump_body(robot)
            #robot = create_cylinder(radius=0.5*BLOCK_SIDE, height=4*BLOCK_SIDE) # vacuum gripper

        block1 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=RED)
        block_z = stable_z(block1, table)
        set_point(block1, Point(z=block_z))

        block2 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=GREEN)
        set_point(block2, Point(x=+0.25, z=block_z))

        block3 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=BLUE)
        set_point(block3, Point(x=-0.15, z=block_z))

        blocks = [block1, block2, block3]

        add_line(Point(x=-TABLE_WIDTH/2, z=block_z - BLOCK_SIDE/2 + EPSILON),
                 Point(x=+TABLE_WIDTH/2, z=block_z - BLOCK_SIDE/2 + EPSILON), color=RED)
        set_camera_pose(camera_point=Point(y=-1, z=block_z+1), target_point=Point(z=block_z))

    wait_for_user()
    block_pose = get_pose(block1)
    open_gripper(robot)
    tool_link = link_from_name(robot, 'tool_link')
    base_from_tool = get_relative_pose(robot, tool_link)
    #draw_pose(unit_pose(), parent=robot, parent_link=tool_link)

    y_grasp, x_grasp = get_top_grasps(block1, tool_pose=unit_pose(), grasp_length=0.03, under=False)
    grasp = y_grasp # fingers won't collide
    gripper_pose = multiply(block_pose, invert(grasp))
    set_pose(robot, multiply(gripper_pose, invert(base_from_tool)))
    wait_for_user('Finish?')
    disconnect()
Esempio n. 8
0
def load_world():
    # TODO: store internal world info here to be reloaded
    with HideOutput():
        robot = load_model(DRAKE_IIWA_URDF)
        # robot = load_model(KUKA_IIWA_URDF)
        floor = load_model('models/short_floor.urdf')
        sink = load_model(SINK_URDF, pose=Pose(Point(x=-0.5)))
        stove = load_model(STOVE_URDF, pose=Pose(Point(x=+0.5)))
        block = load_model(BLOCK_URDF, fixed_base=False)

        block1 = load_model(BLOCK_URDF, fixed_base=False)
        block2 = load_model(BLOCK_URDF, fixed_base=False)
        block3 = load_model(BLOCK_URDF, fixed_base=False)
        block4 = load_model(BLOCK_URDF, fixed_base=False)
        block5 = load_model(BLOCK_URDF, fixed_base=False)
        block6 = load_model(BLOCK_URDF, fixed_base=False)
        block7 = load_model(BLOCK_URDF, fixed_base=False)
        block8 = load_model(BLOCK_URDF, fixed_base=False)

        cup = load_model(
            'models/cup.urdf',  #'models/dinnerware/cup/cup_small.urdf'
            fixed_base=False)

    body_names = {
        sink: 'sink',
        stove: 'stove',
        block: 'celery',
        cup: 'cup',
    }
    movable_bodies = [
        block, cup, block1, block2, block3, block4, block5, block6, block7,
        block8
    ]

    set_pose(block, Pose(Point(x=0.1, y=0.5, z=stable_z(block, floor))))

    set_pose(block1, Pose(Point(x=-0.1, y=0.5, z=stable_z(block1, floor))))
    set_pose(block2, Pose(Point(y=0.35, z=stable_z(block2, floor))))
    set_pose(block3, Pose(Point(y=0.65, z=stable_z(block3, floor))))
    set_pose(block4, Pose(Point(x=0.1, y=0.65, z=stable_z(block4, floor))))
    set_pose(block5, Pose(Point(x=-0.1, y=0.65, z=stable_z(block5, floor))))
    set_pose(block6, Pose(Point(x=0.1, y=0.35, z=stable_z(block6, floor))))
    set_pose(block7, Pose(Point(x=-0.1, y=0.35, z=stable_z(block7, floor))))
    set_pose(block8, Pose(Point(x=0, y=0.5, z=0.45)))

    set_pose(cup, Pose(Point(y=0.5, z=stable_z(cup, floor))))
    set_default_camera()

    return robot, body_names, movable_bodies
Esempio n. 9
0
def plan_commands(state, teleport=False, profile=False, verbose=True):
    # TODO: could make indices into set of bodies to ensure the same...
    # TODO: populate the bodies here from state
    task = state.task
    robot_conf = get_configuration(task.robot)
    robot_pose = get_pose(task.robot)
    sim_world = connect(use_gui=False)
    with ClientSaver(sim_world):
        with HideOutput():
            robot = create_pr2(use_drake=USE_DRAKE_PR2)
            #robot = load_model(DRAKE_PR2_URDF, fixed_base=True)
        set_pose(robot, robot_pose)
        set_configuration(robot, robot_conf)
    clone_world(client=sim_world, exclude=[task.robot])
    set_client(sim_world)
    saved_world = WorldSaver()  # StateSaver()

    pddlstream_problem = pddlstream_from_state(state, teleport=teleport)
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', sorted(init, key=lambda f: f[0]))
    if verbose:
        print('Goal:', goal)
        print('Streams:', stream_map.keys())

    stream_info = {
        'test-vis-base': StreamInfo(eager=True, p_success=0),
        'test-reg-base': StreamInfo(eager=True, p_success=0),
    }

    pr = cProfile.Profile()
    pr.enable()
    solution = solve_focused(pddlstream_problem,
                             stream_info=stream_info,
                             max_cost=MAX_COST,
                             verbose=verbose)
    pr.disable()
    plan, cost, evaluations = solution
    if MAX_COST <= cost:
        plan = None
    print_solution(solution)
    print('Finite cost:', cost < MAX_COST)
    print('Real cost:', float(cost) / SCALE_COST)
    if profile:
        pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    saved_world.restore()
    commands = post_process(state, plan)
    disconnect()
    return commands
Esempio n. 10
0
def problem_fn(n_rovers=1, collisions=True):
    base_extent = 2.5
    base_limits = (-base_extent / 2. * np.ones(2), base_extent / 2. * np.ones(2))
    mound_height = 0.1

    floor = create_box(base_extent, base_extent, 0.001, color=TAN)  # TODO: two rooms
    set_point(floor, Point(z=-0.001 / 2.))

    wall1 = create_box(base_extent + mound_height, mound_height, mound_height, color=GREY)
    set_point(wall1, Point(y=base_extent / 2., z=mound_height / 2.))
    wall2 = create_box(base_extent + mound_height, mound_height, mound_height, color=GREY)
    set_point(wall2, Point(y=-base_extent / 2., z=mound_height / 2.))
    wall3 = create_box(mound_height, base_extent + mound_height, mound_height, color=GREY)
    set_point(wall3, Point(x=base_extent / 2., z=mound_height / 2.))
    wall4 = create_box(mound_height, base_extent + mound_height, mound_height, color=GREY)
    set_point(wall4, Point(x=-base_extent / 2., z=mound_height / 2.))

    wall5 = create_box(mound_height, (base_extent + mound_height)/ 2., mound_height, color=GREY)
    set_point(wall5, Point(y=base_extent / 4., z=mound_height / 2.))

    rover_confs = [(+1, 0, np.pi), (-1, 0, 0)]
    assert n_rovers <= len(rover_confs)

    robots = []
    for i in range(n_rovers):
        with HideOutput():
            rover = load_model(TURTLEBOT_URDF)
        robot_z = stable_z(rover, floor)
        set_point(rover, Point(z=robot_z))
        set_base_conf(rover, rover_confs[i])
        robots.append(rover)
    goal_confs = {robots[0]: rover_confs[-1]}
    #goal_confs = {}

    # TODO: make the objects smaller
    cylinder_radius = 0.25
    body1 = create_cylinder(cylinder_radius, mound_height, color=RED)
    set_point(body1, Point(y=-base_extent / 4., z=mound_height / 2.))
    body2 = create_cylinder(cylinder_radius, mound_height, color=BLUE)
    set_point(body2, Point(x=base_extent / 4., y=3*base_extent / 8., z=mound_height / 2.))
    movable = [body1, body2]
    #goal_holding = {robots[0]: body1}
    goal_holding = {}

    return NAMOProblem(robots, base_limits, movable, collisions=collisions,
                       goal_holding=goal_holding, goal_confs=goal_confs)
Esempio n. 11
0
def problem_fn(n_robots=2, collisions=True):
    base_extent = 2.0
    base_limits = (-base_extent / 2. * np.ones(2),
                   base_extent / 2. * np.ones(2))
    mound_height = 0.1

    floor, walls = create_environment(base_extent, mound_height)
    width = base_extent / 2. - 4 * mound_height
    wall5 = create_box(mound_height, width, mound_height, color=GREY)
    set_point(wall5,
              Point(y=-(base_extent / 2 - width / 2.), z=mound_height / 2.))
    wall6 = create_box(mound_height, width, mound_height, color=GREY)
    set_point(wall6,
              Point(y=+(base_extent / 2 - width / 2.), z=mound_height / 2.))

    distance = 0.5
    #initial_confs = [(-distance, -distance, 0),
    #                 (-distance, +distance, 0)]
    initial_confs = [(-distance, -distance, 0), (+distance, +distance, 0)]
    assert n_robots <= len(initial_confs)

    body_from_name = {}
    #robots = ['green']
    robots = ['green', 'blue']
    with LockRenderer():
        for i, name in enumerate(robots):
            with HideOutput():
                body = load_model(
                    TURTLEBOT_URDF)  # TURTLEBOT_URDF | ROOMBA_URDF
            body_from_name[name] = body
            robot_z = stable_z(body, floor)
            set_point(body, Point(z=robot_z))
            set_base_conf(body, initial_confs[i])
            set_body_color(body, COLOR_FROM_NAME[name])

    goals = [(+distance, -distance, 0), (+distance, +distance, 0)]
    #goals = goals[::-1]
    goals = initial_confs[::-1]
    goal_confs = dict(zip(robots, goals))

    return NAMOProblem(body_from_name,
                       robots,
                       base_limits,
                       collisions=collisions,
                       goal_confs=goal_confs)
Esempio n. 12
0
def load_world():
    # TODO: store internal world info here to be reloaded
    with HideOutput():
        robot = load_model(DRAKE_IIWA_URDF)
        # robot = load_model(KUKA_IIWA_URDF)
        floor = load_model('models/short_floor.urdf')
        sink = load_model(SINK_URDF, pose=Pose(Point(x=-0.5)))
        stove = load_model(STOVE_URDF, pose=Pose(Point(x=+0.5)))
        block = load_model(BLOCK_URDF, fixed_base=False)
        #cup = load_model('models/dinnerware/cup/cup_small.urdf',
        # Pose(Point(x=+0.5, y=+0.5, z=0.5)), fixed_base=False)

    body_names = {
        sink: 'sink',
        stove: 'stove',
        block: 'celery',
    }
    movable_bodies = [block]

    set_pose(block, Pose(Point(y=0.5, z=stable_z(block, floor))))
    set_default_camera()

    return robot, body_names, movable_bodies
Esempio n. 13
0
def rovers1(n_rovers=2,
            n_objectives=4,
            n_rocks=3,
            n_soil=3,
            n_stores=1,
            n_obstacles=8):
    base_extent = 5.0
    base_limits = (-base_extent / 2. * np.ones(2),
                   base_extent / 2. * np.ones(2))
    mount_width = 0.5
    mound_height = 0.1

    floor = create_box(base_extent, base_extent, 0.001,
                       color=TAN)  # TODO: two rooms
    set_point(floor, Point(z=-0.001 / 2.))

    wall1 = create_box(base_extent + mound_height,
                       mound_height,
                       mound_height,
                       color=GREY)
    set_point(wall1, Point(y=base_extent / 2., z=mound_height / 2.))
    wall2 = create_box(base_extent + mound_height,
                       mound_height,
                       mound_height,
                       color=GREY)
    set_point(wall2, Point(y=-base_extent / 2., z=mound_height / 2.))
    wall3 = create_box(mound_height,
                       base_extent + mound_height,
                       mound_height,
                       color=GREY)
    set_point(wall3, Point(x=base_extent / 2., z=mound_height / 2.))
    wall4 = create_box(mound_height,
                       base_extent + mound_height,
                       mound_height,
                       color=GREY)
    set_point(wall4, Point(x=-base_extent / 2., z=mound_height / 2.))
    # TODO: can add obstacles along the wall

    wall = create_box(mound_height, base_extent, mound_height,
                      color=GREY)  # TODO: two rooms
    set_point(wall, Point(z=mound_height / 2.))

    add_data_path()
    with HideOutput():
        lander = load_pybullet(HUSKY_URDF, scale=1)
    lander_z = stable_z(lander, floor)
    set_point(lander, Point(-1.9, -2, lander_z))

    mound1 = create_box(mount_width, mount_width, mound_height, color=GREY)
    set_point(mound1, [+2, 2, mound_height / 2.])
    mound2 = create_box(mount_width, mount_width, mound_height, color=GREY)
    set_point(mound2, [-2, 2, mound_height / 2.])
    mound3 = create_box(mount_width, mount_width, mound_height, color=GREY)
    set_point(mound3, [+0.5, 2, mound_height / 2.])
    mound4 = create_box(mount_width, mount_width, mound_height, color=GREY)
    set_point(mound4, [-0.5, 2, mound_height / 2.])
    mounds = [mound1, mound2, mound3, mound4]
    random.shuffle(mounds)

    body_types = []
    initial_surfaces = OrderedDict()
    min_distances = {}
    for _ in range(n_obstacles):
        body = create_box(mound_height,
                          mound_height,
                          4 * mound_height,
                          color=GREY)
        initial_surfaces[body] = floor

    rover_confs = [(+1, -1.75, np.pi), (-1, -1.75, 0)]
    assert n_rovers <= len(rover_confs)

    landers = [lander]
    stores = ['store{}'.format(i) for i in range(n_stores)]

    rovers = []
    for i in range(n_rovers):
        # camera_rgb_optical_frame
        with HideOutput():
            rover = load_model(TURTLEBOT_URDF)
        robot_z = stable_z(rover, floor)
        set_point(rover, Point(z=robot_z))
        #handles = draw_aabb(get_aabb(rover)) # Includes the origin
        #print(get_center_extent(rover))
        #wait_for_user()
        set_base_conf(rover, rover_confs[i])
        rovers.append(rover)
        #dump_body(rover)
        #draw_pose(get_link_pose(rover, link_from_name(rover, KINECT_FRAME)))

    obj_width = 0.07
    obj_height = 0.2

    objectives = []
    for i in range(n_objectives):
        body = create_box(obj_width, obj_width, obj_height, color=BLUE)
        objectives.append(body)
        #initial_surfaces[body] = random.choice(mounds)
        initial_surfaces[body] = mounds[i]
    min_distances.update({r: 0.05 for r in objectives})

    # TODO: it is moving to intermediate locations attempting to reach the rocks

    rocks = []
    for _ in range(n_rocks):
        body = create_box(0.075, 0.075, 0.01, color=BLACK)
        rocks.append(body)
        body_types.append((body, 'stone'))
    for _ in range(n_soil):
        body = create_box(0.1, 0.1, 0.005, color=BROWN)
        rocks.append(body)
        body_types.append((body, 'soil'))
    soils = []  # Treating soil as rocks for simplicity

    initial_surfaces.update({r: floor for r in rocks})
    min_distances.update({r: 0.2 for r in rocks})
    sample_placements(initial_surfaces, min_distances=min_distances)

    return RoversProblem(rovers, landers, objectives, rocks, soils, stores,
                         base_limits, body_types)
Esempio n. 14
0
def main(display=True, teleport=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('-problem',
                        default='rovers1',
                        help='The name of the problem to solve')
    parser.add_argument('-algorithm',
                        default='focused',
                        help='Specifies the algorithm')
    parser.add_argument('-cfree',
                        action='store_true',
                        help='Disables collisions')
    parser.add_argument('-deterministic',
                        action='store_true',
                        help='Uses a deterministic sampler')
    parser.add_argument('-optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-t',
                        '--max_time',
                        default=120,
                        type=int,
                        help='The max time')
    parser.add_argument('-unit', action='store_true', help='Uses unit costs')
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='enable the viewer while planning')
    args = parser.parse_args()
    print(args)

    problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    if args.problem not in problem_fn_from_name:
        raise ValueError(args.problem)
    problem_fn = problem_fn_from_name[args.problem]
    connect(use_gui=args.viewer)
    with HideOutput():
        problem = problem_fn()
    saver = WorldSaver()
    draw_base_limits(problem.limits, color=(1, 0, 0))

    pddlstream_problem = pddlstream_from_problem(problem,
                                                 collisions=not args.cfree,
                                                 teleport=teleport)
    stream_info = {
        'test-cfree-ray-conf': StreamInfo(negate=True),
        'test-reachable': StreamInfo(p_success=1e-1),
        'obj-inv-visible': StreamInfo(),
        'com-inv-visible': StreamInfo(),
        'sample-above': StreamInfo(),
        'sample-motion': StreamInfo(overhead=10),
    }
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    #print('Streams:', stream_map.keys())

    success_cost = 0 if args.optimal else INF
    planner = 'ff-wastar3'
    search_sample_ratio = 2
    max_planner_time = 10

    # TODO: need to accelerate samples here because of the failed test reachable

    pr = cProfile.Profile()
    pr.enable()
    with LockRenderer(False):
        if args.algorithm == 'focused':
            # TODO: option to only consider costs during local optimization
            solution = solve_focused(
                pddlstream_problem,
                stream_info=stream_info,
                planner=planner,
                max_planner_time=max_planner_time,
                debug=False,
                unit_costs=args.unit,
                success_cost=success_cost,
                max_time=args.max_time,
                verbose=True,
                unit_efforts=True,
                effort_weight=1,
                #bind=True, max_skeletons=None,
                search_sample_ratio=search_sample_ratio)
        elif args.algorithm == 'incremental':
            solution = solve_incremental(pddlstream_problem,
                                         planner=planner,
                                         max_planner_time=max_planner_time,
                                         unit_costs=args.unit,
                                         success_cost=success_cost,
                                         max_time=args.max_time,
                                         verbose=True)
        else:
            raise ValueError(args.algorithm)

    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(25)  # cumtime | tottime
    if plan is None:
        return
    if (not display) or (plan is None):
        disconnect()
        return

    # Maybe openrave didn't actually sample any joints...
    # http://openrave.org/docs/0.8.2/openravepy/examples.tutorial_iksolutions/
    with LockRenderer():
        commands = post_process(problem, plan, teleport=teleport)
        saver.restore()  # Assumes bodies are ordered the same way
    if not args.viewer:
        disconnect()
        connect(use_gui=True)
        with LockRenderer():
            with HideOutput():
                problem_fn()  # TODO: way of doing this without reloading?
            saver.restore()  # Assumes bodies are ordered the same way

    if args.simulate:
        control_commands(commands)
    else:
        time_step = None if teleport else 0.01
        apply_commands(BeliefState(problem), commands, time_step)
    wait_for_user()
    disconnect()
Esempio n. 15
0
def main():
    parser = create_parser()
    parser.add_argument('-problem',
                        default='rovers1',
                        help='The name of the problem to solve')
    parser.add_argument('-cfree',
                        action='store_true',
                        help='Disables collisions')
    parser.add_argument('-deterministic',
                        action='store_true',
                        help='Uses a deterministic sampler')
    parser.add_argument('-optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-t',
                        '--max_time',
                        default=120,
                        type=int,
                        help='The max time')
    parser.add_argument('-enable',
                        action='store_true',
                        help='Enables rendering during planning')
    parser.add_argument('-teleport',
                        action='store_true',
                        help='Teleports between configurations')
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    if args.problem not in problem_fn_from_name:
        raise ValueError(args.problem)
    problem_fn = problem_fn_from_name[args.problem]
    connect(use_gui=args.viewer)
    with HideOutput():
        rovers_problem = problem_fn()
    saver = WorldSaver()
    draw_base_limits(rovers_problem.limits, color=RED)

    pddlstream_problem = pddlstream_from_problem(rovers_problem,
                                                 collisions=not args.cfree,
                                                 teleport=args.teleport,
                                                 holonomic=False,
                                                 reversible=True,
                                                 use_aabb=True)
    stream_info = {
        'test-cfree-ray-conf': StreamInfo(),
        'test-reachable': StreamInfo(p_success=1e-1),
        'obj-inv-visible': StreamInfo(),
        'com-inv-visible': StreamInfo(),
        'sample-above': StreamInfo(),
        'sample-motion': StreamInfo(overhead=10),
    }
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    #print('Streams:', stream_map.keys())

    success_cost = 0 if args.optimal else INF
    planner = 'ff-wastar3'
    search_sample_ratio = 2
    max_planner_time = 10

    # TODO: need to accelerate samples here because of the failed test reachable
    with Profiler(field='tottime', num=25):
        with LockRenderer(lock=not args.enable):
            # TODO: option to only consider costs during local optimization
            solution = solve(pddlstream_problem,
                             algorithm=args.algorithm,
                             stream_info=stream_info,
                             planner=planner,
                             max_planner_time=max_planner_time,
                             debug=False,
                             unit_costs=args.unit,
                             success_cost=success_cost,
                             max_time=args.max_time,
                             verbose=True,
                             unit_efforts=True,
                             effort_weight=1,
                             search_sample_ratio=search_sample_ratio)
            for body in get_bodies():
                if body not in saver.bodies:
                    remove_body(body)
            saver.restore()

    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    # Maybe OpenRAVE didn't actually sample any joints...
    # http://openrave.org/docs/0.8.2/openravepy/examples.tutorial_iksolutions/
    with LockRenderer():
        commands = post_process(rovers_problem, plan)
        saver.restore()

    wait_for_user('Begin?')
    if args.simulate:
        control_commands(commands)
    else:
        time_step = None if args.teleport else 0.01
        apply_commands(BeliefState(rovers_problem), commands, time_step)
    wait_for_user('Finish?')
    disconnect()
Esempio n. 16
0
def main(teleport=False):
    #parser = create_parser()
    parser = argparse.ArgumentParser()
    parser.add_argument('-algorithm', default='incremental', help='Specifies the algorithm')
    parser.add_argument('-cfree', action='store_true', help='Disables collisions')
    parser.add_argument('-deterministic', action='store_true', help='Uses a deterministic sampler')
    parser.add_argument('-optimal', action='store_true', help='Runs in an anytime mode')
    parser.add_argument('-t', '--max_time', default=5*60, type=int, help='The max time')
    parser.add_argument('-enable', action='store_true', help='Enables rendering during planning')
    parser.add_argument('-viewer', action='store_true', help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    connect(use_gui=args.viewer)
    with HideOutput():
        namo_problem = problem_fn(collisions=not args.cfree)
    saver = WorldSaver()
    draw_base_limits(namo_problem.limits, color=RED)

    pddlstream_problem, edges = pddlstream_from_problem(namo_problem, teleport=teleport)
    _, constant_map, _, stream_map, init, goal = pddlstream_problem
    print('Constants:', constant_map)
    print('Init:', init)
    print('Goal:', goal)

    stream_info = {
        'compute-motion': StreamInfo(eager=True, p_success=0),
        'ConfConfCollision': PredicateInfo(p_success=1, overhead=0.1),
        'TrajConfCollision': PredicateInfo(p_success=1, overhead=1),
        'TrajTrajCollision': PredicateInfo(p_success=1, overhead=10),
        'TrajDistance': FunctionInfo(eager=True), # Need to eagerly evaluate otherwise 0 duration (failure)
    }

    success_cost = 0 if args.optimal else INF
    max_planner_time = 10
    with Profiler(field='tottime', num=25): # cumtime | tottime
        with LockRenderer(lock=not args.enable):
            # TODO: solution = solve_incremental(pddlstream_problem
            if args.algorithm == 'incremental':
                solution = solve_incremental(pddlstream_problem,
                                             max_planner_time=max_planner_time,
                                             success_cost=success_cost, max_time=args.max_time,
                                             start_complexity=INF,
                                             verbose=True, debug=True)
            elif args.algorithm == 'focused':
                solution = solve_focused(pddlstream_problem, stream_info=stream_info,
                                         max_planner_time=max_planner_time,
                                         success_cost=success_cost, max_time=args.max_time,
                                         max_skeletons=None, bind=True, max_failures=INF,
                                         verbose=True, debug=True)
            else:
                raise ValueError(args.algorithm)

    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    saver.restore()
    draw_edges(edges)
    state = BeliefState(namo_problem)

    wait_for_user('Begin?')
    #time_step = None if teleport else 0.01
    #with VideoSaver('video.mp4'):
    display_plan(namo_problem, state, plan)
    wait_for_user('Finish?')
    disconnect()
Esempio n. 17
0
def load_pick_and_place(extrusion_name, scale=MILLIMETER, max_bricks=6):
    assert extrusion_name == 'choreo_brick_demo'
    root_directory = os.path.dirname(os.path.abspath(__file__))
    bricks_directory = os.path.join(root_directory, PICKNPLACE_DIRECTORY,
                                    'bricks')
    print('Name: {}'.format(extrusion_name))
    with open(
            os.path.join(bricks_directory,
                         PICKNPLACE_FILENAMES[extrusion_name]), 'r') as f:
        json_data = json.loads(f.read())

    kuka_urdf = '../models/framefab_kr6_r900_support/urdf/kr6_r900_mit_suction_gripper.urdf'
    obj_directory = os.path.join(bricks_directory, 'meshes', 'collision')
    with HideOutput():
        #world = load_pybullet(os.path.join(bricks_directory, 'urdf', 'brick_demo.urdf'))
        robot = load_pybullet(os.path.join(root_directory, kuka_urdf),
                              fixed_base=True)
    #set_point(robot, (0.14, 0, 0))
    #dump_body(robot)

    pick_base_point = parse_point(json_data['pick_base_center_point'])
    draw_pose((pick_base_point, unit_quat()))
    place_base_point = parse_point(json_data['place_base_center_point'])
    draw_pose((place_base_point, unit_quat()))

    # workspace_geo_place_support_object_11 = pick_left_over_bricks_11
    obstacle_from_name = {}
    for filename in json_data['pick_support_surface_file_names']:
        obstacle_from_name[strip_extension(filename)] = \
            create_obj(os.path.join(obj_directory, filename), scale=scale, color=(0.5, 0.5, 0.5, 1))
    for filename in json_data['place_support_surface_file_names']:
        obstacle_from_name[strip_extension(filename)] = \
            create_obj(os.path.join(obj_directory, filename), scale=scale, color=(1., 0., 0., 1))

    brick_from_index = {}
    for json_element in json_data['sequenced_elements']:
        index = json_element['order_id']
        pick_body = create_obj(os.path.join(
            obj_directory, json_element['pick_element_geometry_file_name']),
                               scale=scale,
                               color=(0, 0, 1, 1))
        add_body_name(pick_body, index)
        #place_body = create_obj(os.path.join(obj_directory, json_element['place_element_geometry_file_name']),
        #                        scale=scale, color=(0, 1, 0, 1))
        #add_body_name(place_body, name)
        world_from_obj_pick = get_pose(pick_body)

        # [u'pick_grasp_plane', u'pick_grasp_retreat_plane', u'place_grasp_retreat_plane',
        #  u'pick_grasp_approach_plane', u'place_grasp_approach_plane', u'place_grasp_plane']
        ee_grasp_poses = [{
            name: pose_from_tform(parse_transform(approach))
            for name, approach in json_grasp.items()
        } for json_grasp in json_element['grasps']]

        # pick_grasp_plane is at the top of the object with z facing downwards
        grasp_index = 0
        world_from_ee_pick = ee_grasp_poses[grasp_index]['pick_grasp_plane']
        world_from_ee_place = ee_grasp_poses[grasp_index]['place_grasp_plane']
        #draw_pose(world_from_ee_pick, length=0.04)
        #draw_pose(world_from_ee_place, length=0.04)

        ee_from_obj = multiply(invert(world_from_ee_pick),
                               world_from_obj_pick)  # Using pick frame
        world_from_obj_place = multiply(world_from_ee_place, ee_from_obj)
        #set_pose(pick_body, world_from_obj_place)

        grasps = [
            Grasp(
                index, num, *[
                    multiply(invert(world_from_ee_pick[name]),
                             world_from_obj_pick) for name in GRASP_NAMES
                ]) for num, world_from_ee_pick in enumerate(ee_grasp_poses)
        ]
        brick_from_index[index] = Brick(
            index=index,
            body=pick_body,
            initial_pose=WorldPose(index, world_from_obj_pick),
            goal_pose=WorldPose(index, world_from_obj_place),
            grasps=grasps,
            goal_supports=json_element.get('place_contact_ngh_ids', []))
        # pick_contact_ngh_ids are movable element contact partial orders
        # pick_support_surface_file_names are fixed element contact partial orders

    return robot, brick_from_index, obstacle_from_name
Esempio n. 18
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    connect(use_gui=True)

    with LockRenderer():
        draw_pose(unit_pose(), length=1, width=1)
        floor = create_floor()
        set_point(floor, Point(z=-EPSILON))

        table1 = create_table(width=TABLE_WIDTH,
                              length=TABLE_WIDTH / 2,
                              height=TABLE_WIDTH / 2,
                              top_color=TAN,
                              cylinder=False)
        set_point(table1, Point(y=+0.5))

        table2 = create_table(width=TABLE_WIDTH,
                              length=TABLE_WIDTH / 2,
                              height=TABLE_WIDTH / 2,
                              top_color=TAN,
                              cylinder=False)
        set_point(table2, Point(y=-0.5))

        tables = [table1, table2]

        #set_euler(table1, Euler(yaw=np.pi/2))
        with HideOutput():
            # data_path = add_data_path()
            # robot_path = os.path.join(data_path, WSG_GRIPPER)
            robot_path = get_model_path(
                WSG_50_URDF)  # WSG_50_URDF | PANDA_HAND_URDF
            robot = load_pybullet(robot_path, fixed_base=True)
            #dump_body(robot)

        block1 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=RED)
        block_z = stable_z(block1, table1)
        set_point(block1, Point(y=-0.5, z=block_z))

        block2 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=GREEN)
        set_point(block2, Point(x=-0.25, y=-0.5, z=block_z))

        block3 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=BLUE)
        set_point(block3, Point(x=-0.15, y=+0.5, z=block_z))

        blocks = [block1, block2, block3]

        set_camera_pose(camera_point=Point(x=-1, z=block_z + 1),
                        target_point=Point(z=block_z))

    block_pose = get_pose(block1)
    open_gripper(robot)
    tool_link = link_from_name(robot, 'tool_link')
    base_from_tool = get_relative_pose(robot, tool_link)
    #draw_pose(unit_pose(), parent=robot, parent_link=tool_link)
    grasps = get_side_grasps(block1,
                             tool_pose=Pose(euler=Euler(yaw=np.pi / 2)),
                             top_offset=0.02,
                             grasp_length=0.03,
                             under=False)[1:2]
    for grasp in grasps:
        gripper_pose = multiply(block_pose, invert(grasp))
        set_pose(robot, multiply(gripper_pose, invert(base_from_tool)))
        wait_for_user()

    wait_for_user('Finish?')
    disconnect()
Esempio n. 19
0
def main(partial=False, defer=False, verbose=True):
    parser = create_parser()
    parser.add_argument('-enable',
                        action='store_true',
                        help='Enables rendering during planning')
    parser.add_argument('-teleport',
                        action='store_true',
                        help='Teleports between configurations')
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    connect(use_gui=args.viewer)
    problem_fn = cooking_problem
    # holding_problem | stacking_problem | cleaning_problem | cooking_problem
    # cleaning_button_problem | cooking_button_problem
    with HideOutput():
        problem = problem_fn()
    #state_id = save_state()
    saver = WorldSaver()
    #dump_world()

    pddlstream_problem = pddlstream_from_problem(problem,
                                                 teleport=args.teleport)

    stream_info = {
        # 'test-cfree-pose-pose': StreamInfo(p_success=1e-3, verbose=verbose),
        # 'test-cfree-approach-pose': StreamInfo(p_success=1e-2, verbose=verbose),
        # 'test-cfree-traj-pose': StreamInfo(p_success=1e-1, verbose=verbose),
        'MoveCost': FunctionInfo(opt_move_cost_fn),
    }
    stream_info.update({
        'sample-pose':
        StreamInfo(PartialInputs('?r')),
        'inverse-kinematics':
        StreamInfo(PartialInputs('?p')),
        'plan-base-motion':
        StreamInfo(PartialInputs('?q1 ?q2'),
                   defer_fn=defer_shared if defer else never_defer),
    } if partial else {
        'sample-pose': StreamInfo(from_fn(opt_pose_fn)),
        'inverse-kinematics': StreamInfo(from_fn(opt_ik_fn)),
        'plan-base-motion': StreamInfo(from_fn(opt_motion_fn)),
    })
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    print('Streams:', str_from_object(set(stream_map)))
    print(SEPARATOR)

    with Profiler():
        with LockRenderer(lock=not args.enable):
            solution = solve(pddlstream_problem,
                             algorithm=args.algorithm,
                             unit_costs=args.unit,
                             stream_info=stream_info,
                             success_cost=INF,
                             verbose=True,
                             debug=False)
            saver.restore()

    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    print(SEPARATOR)
    with LockRenderer(lock=not args.enable):
        commands = post_process(problem, plan)
        problem.remove_gripper()
        saver.restore()

    #restore_state(state_id)
    saver.restore()
    wait_if_gui('Execute?')
    if args.simulate:
        control_commands(commands)
    else:
        apply_commands(State(), commands, time_step=0.01)
    wait_if_gui('Finish?')
    disconnect()
Esempio n. 20
0
def main():
    parser = create_parser()
    parser.add_argument('-problem', default='problem1', help='The name of the problem to solve')
    parser.add_argument('-cfree', action='store_true', help='Disables collisions')
    parser.add_argument('-deterministic', action='store_true', help='Uses a deterministic sampler')
    parser.add_argument('-optimal', action='store_true', help='Runs in an anytime mode')
    parser.add_argument('-t', '--max_time', default=120, type=int, help='The max time')
    parser.add_argument('-enable', action='store_true', help='Enables rendering during planning')
    parser.add_argument('-teleport', action='store_true', help='Teleports between configurations')
    parser.add_argument('-simulate', action='store_true', help='Simulates the system')
    parser.add_argument('-viewer', action='store_true', help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    if args.problem not in problem_fn_from_name:
        raise ValueError(args.problem)
    problem_fn = problem_fn_from_name[args.problem]
    connect(use_gui=args.viewer)
    with HideOutput():
        problem = problem_fn()
    saver = WorldSaver()
    draw_base_limits(problem.limits, color=RED)

    pddlstream_problem = pddlstream_from_problem(problem, collisions=not args.cfree, teleport=args.teleport)
    stream_info = {
        'inverse-kinematics': StreamInfo(),
        'plan-base-motion': StreamInfo(overhead=1e1),
    }
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    #print('Streams:', stream_map.keys())

    success_cost = 0 if args.optimal else INF
    planner = 'ff-astar'
    search_sample_ratio = 1
    max_planner_time = 10

    with Profiler(field='cumtime', num=25): # cumtime | tottime
        with LockRenderer(lock=not args.enable):
            solution = solve(pddlstream_problem, stream_info=stream_info,
                                     planner=planner, max_planner_time=max_planner_time,
                                     unit_costs=args.unit, success_cost=success_cost,
                                     max_time=args.max_time, verbose=True, debug=False,
                                     unit_efforts=True, effort_weight=1,
                                     search_sample_ratio=search_sample_ratio)
            saver.restore()
    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    # Maybe openrave didn't actually sample any joints...
    # http://openrave.org/docs/0.8.2/openravepy/examples.tutorial_iksolutions/
    with LockRenderer(lock=not args.enable):
        commands = post_process(problem, plan, teleport=args.teleport)
        saver.restore()

    if args.simulate:
        control_commands(commands)
    else:
        time_step = None if args.teleport else 0.01
        apply_commands(BeliefState(problem), commands, time_step)
    wait_for_user()
    disconnect()
Esempio n. 21
0
def main(display=True, teleport=False, partial=False, defer=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='enable the viewer while planning')
    #parser.add_argument('-display', action='store_true', help='displays the solution')
    args = parser.parse_args()

    connect(use_gui=args.viewer)
    problem_fn = cooking_problem
    # holding_problem | stacking_problem | cleaning_problem | cooking_problem
    # cleaning_button_problem | cooking_button_problem
    with HideOutput():
        problem = problem_fn()
    state_id = save_state()
    #saved_world = WorldSaver()
    #dump_world()

    pddlstream_problem = pddlstream_from_problem(problem, teleport=teleport)

    stream_info = {
        'sample-pose':
        StreamInfo(PartialInputs('?r')),
        'inverse-kinematics':
        StreamInfo(PartialInputs('?p')),
        'plan-base-motion':
        StreamInfo(PartialInputs('?q1 ?q2'),
                   defer_fn=defer_shared if defer else never_defer),
        'MoveCost':
        FunctionInfo(opt_move_cost_fn),
    } if partial else {
        'sample-pose': StreamInfo(from_fn(opt_pose_fn)),
        'inverse-kinematics': StreamInfo(from_fn(opt_ik_fn)),
        'plan-base-motion': StreamInfo(from_fn(opt_motion_fn)),
        'MoveCost': FunctionInfo(opt_move_cost_fn),
    }
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    print('Streams:', stream_map.keys())

    pr = cProfile.Profile()
    pr.enable()
    with LockRenderer():
        #solution = solve_incremental(pddlstream_problem, debug=True)
        solution = solve_focused(pddlstream_problem,
                                 stream_info=stream_info,
                                 success_cost=INF,
                                 debug=False)
    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    if plan is None:
        return
    if (not display) or (plan is None):
        disconnect()
        return

    with LockRenderer():
        commands = post_process(problem, plan)
    if args.viewer:
        restore_state(state_id)
    else:
        disconnect()
        connect(use_gui=True)
        with HideOutput():
            problem_fn()  # TODO: way of doing this without reloading?

    if args.simulate:
        control_commands(commands)
    else:
        apply_commands(State(), commands, time_step=0.01)
    user_input('Finish?')
    disconnect()
Esempio n. 22
0
def main(display=True, teleport=False):
    parser = argparse.ArgumentParser()
    #parser.add_argument('-problem', default='rovers1', help='The name of the problem to solve')
    parser.add_argument('-algorithm',
                        default='focused',
                        help='Specifies the algorithm')
    parser.add_argument('-cfree',
                        action='store_true',
                        help='Disables collisions')
    parser.add_argument('-deterministic',
                        action='store_true',
                        help='Uses a deterministic sampler')
    parser.add_argument('-optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-t',
                        '--max_time',
                        default=120,
                        type=int,
                        help='The max time')
    parser.add_argument('-unit', action='store_true', help='Uses unit costs')
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='enable the viewer while planning')
    args = parser.parse_args()
    print(args)

    #problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    #if args.problem not in problem_fn_from_name:
    #    raise ValueError(args.problem)
    #problem_fn = problem_fn_from_name[args.problem]
    connect(use_gui=args.viewer)
    with HideOutput():
        problem = problem_fn(collisions=not args.cfree)
    saver = WorldSaver()
    draw_base_limits(problem.limits, color=RED)

    pddlstream_problem = pddlstream_from_problem(problem, teleport=teleport)
    stream_info = {
        'test-cfree-conf-pose': StreamInfo(negate=True, p_success=1e-2),
        'test-cfree-traj-pose': StreamInfo(negate=True, p_success=1e-1),
        'compute-motion': StreamInfo(eager=True, p_success=0),
        'test-reachable': StreamInfo(eager=True),
        'Distance': FunctionInfo(eager=True),
    }
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)

    success_cost = 0 if args.optimal else INF
    planner = 'ff-wastar1'
    search_sample_ratio = 0
    max_planner_time = 10

    pr = cProfile.Profile()
    pr.enable()
    with LockRenderer(True):
        if args.algorithm == 'focused':
            solution = solve_focused(pddlstream_problem,
                                     stream_info=stream_info,
                                     planner=planner,
                                     max_planner_time=max_planner_time,
                                     debug=False,
                                     unit_costs=args.unit,
                                     success_cost=success_cost,
                                     max_time=args.max_time,
                                     verbose=True,
                                     unit_efforts=True,
                                     effort_weight=1,
                                     bind=True,
                                     max_skeletons=None,
                                     search_sample_ratio=search_sample_ratio)
        elif args.algorithm == 'incremental':
            solution = solve_incremental(pddlstream_problem,
                                         planner=planner,
                                         max_planner_time=max_planner_time,
                                         unit_costs=args.unit,
                                         success_cost=success_cost,
                                         max_time=args.max_time,
                                         verbose=True)
        else:
            raise ValueError(args.algorithm)
        saver.restore()

    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(25)  # cumtime | tottime
    if plan is None:
        wait_for_user()
        return
    if (not display) or (plan is None):
        disconnect()
        return

    with LockRenderer():
        commands = post_process(problem, plan, teleport=teleport)
        saver.restore()  # Assumes bodies are ordered the same way
    if not args.viewer:
        disconnect()
        connect(use_gui=True)
        with LockRenderer():
            with HideOutput():
                problem_fn()  # TODO: way of doing this without reloading?
            saver.restore()  # Assumes bodies are ordered the same way

    wait_for_user()
    if args.simulate:
        control_commands(commands)
    else:
        time_step = None if teleport else 0.01
        apply_commands(BeliefState(problem), commands, time_step=time_step)
    wait_for_user()
    disconnect()
Esempio n. 23
0
def main():
    parser = create_parser(default_algorithm='binding')
    parser.add_argument('-cfree',
                        action='store_true',
                        help='Disables collisions')
    parser.add_argument('-deterministic',
                        action='store_true',
                        help='Uses a deterministic sampler')
    parser.add_argument('-optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-t',
                        '--max_time',
                        default=120,
                        type=int,
                        help='The max time')
    parser.add_argument('-enable',
                        action='store_true',
                        help='Enables rendering during planning')
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    connect(use_gui=args.viewer)
    with HideOutput():
        problem = problem_fn(collisions=not args.cfree)
    saver = WorldSaver()
    draw_base_limits(problem.limits, color=RED)

    pddlstream_problem = pddlstream_from_problem(problem)
    stream_info = {
        'test-cfree-conf-pose': StreamInfo(p_success=1e-2),
        'test-cfree-traj-pose': StreamInfo(p_success=1e-1),
        'compute-motion': StreamInfo(eager=True, p_success=0),
        'test-reachable': StreamInfo(eager=True),
        'Distance': FunctionInfo(eager=True),
    }
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)

    success_cost = 0 if args.optimal else INF
    planner = 'ff-wastar1'
    search_sample_ratio = 0
    max_planner_time = 10

    with Profiler(field='tottime', num=25):  # cumtime | tottime
        with LockRenderer(lock=not args.enable):
            solution = solve(pddlstream_problem,
                             algorithm=args.algorithm,
                             stream_info=stream_info,
                             planner=planner,
                             max_planner_time=max_planner_time,
                             debug=False,
                             unit_costs=args.unit,
                             success_cost=success_cost,
                             max_time=args.max_time,
                             verbose=True,
                             unit_efforts=True,
                             effort_weight=1,
                             search_sample_ratio=search_sample_ratio)
            saver.restore()

    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    with LockRenderer():
        commands = post_process(problem, plan)
        saver.restore()  # Assumes bodies are ordered the same way

    wait_for_user()
    if args.simulate:
        control_commands(commands)
    else:
        apply_commands(BeliefState(problem), commands,
                       time_step=1e-2)  # 1e-2 | None
    wait_for_user()
    disconnect()
Esempio n. 24
0
def main(verbose=True):
    # TODO: could work just on postprocessing
    # TODO: try the other reachability database
    # TODO: option to only consider costs during local optimization

    parser = create_parser()
    parser.add_argument('-problem',
                        default='packed',
                        help='The name of the problem to solve')
    parser.add_argument('-n',
                        '--number',
                        default=5,
                        type=int,
                        help='The number of objects')
    parser.add_argument('-cfree',
                        action='store_true',
                        help='Disables collisions')
    parser.add_argument('-deterministic',
                        action='store_true',
                        help='Uses a deterministic sampler')
    parser.add_argument('-optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-t',
                        '--max_time',
                        default=120,
                        type=int,
                        help='The max time')
    parser.add_argument('-teleport',
                        action='store_true',
                        help='Teleports between configurations')
    parser.add_argument('-enable',
                        action='store_true',
                        help='Enables rendering during planning')
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    if args.problem not in problem_fn_from_name:
        raise ValueError(args.problem)
    problem_fn = problem_fn_from_name[args.problem]

    connect(use_gui=args.viewer)
    with HideOutput():
        problem = problem_fn(num=args.number)
    draw_base_limits(problem.base_limits, color=(1, 0, 0))
    saver = WorldSaver()

    #handles = []
    #for link in get_group_joints(problem.robot, 'left_arm'):
    #    handles.append(draw_link_name(problem.robot, link))
    #wait_for_user()

    pddlstream_problem = pddlstream_from_problem(problem,
                                                 collisions=not args.cfree,
                                                 teleport=args.teleport)
    stream_info = {
        'inverse-kinematics':
        StreamInfo(),
        'plan-base-motion':
        StreamInfo(overhead=1e1),
        'test-cfree-pose-pose':
        StreamInfo(p_success=1e-3, verbose=verbose),
        'test-cfree-approach-pose':
        StreamInfo(p_success=1e-2, verbose=verbose),
        'test-cfree-traj-pose':
        StreamInfo(p_success=1e-1,
                   verbose=verbose),  # TODO: apply to arm and base trajs
        #'test-cfree-traj-grasp-pose': StreamInfo(verbose=verbose),
        'Distance':
        FunctionInfo(p_success=0.99, opt_fn=lambda q1, q2: BASE_CONSTANT),
        #'MoveCost': FunctionInfo(lambda t: BASE_CONSTANT),
    }
    #stream_info = {}

    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    print('Streams:', str_from_object(set(stream_map)))

    success_cost = 0 if args.optimal else INF
    planner = 'ff-astar' if args.optimal else 'ff-wastar3'
    search_sample_ratio = 2
    max_planner_time = 10
    # effort_weight = 0 if args.optimal else 1
    effort_weight = 1e-3 if args.optimal else 1

    with Profiler(field='tottime', num=25):  # cumtime | tottime
        with LockRenderer(lock=not args.enable):
            solution = solve(pddlstream_problem,
                             algorithm=args.algorithm,
                             stream_info=stream_info,
                             planner=planner,
                             max_planner_time=max_planner_time,
                             unit_costs=args.unit,
                             success_cost=success_cost,
                             max_time=args.max_time,
                             verbose=True,
                             debug=False,
                             unit_efforts=True,
                             effort_weight=effort_weight,
                             search_sample_ratio=search_sample_ratio)
            saver.restore()

    cost_over_time = [(s.cost, s.time) for s in SOLUTIONS]
    for i, (cost, runtime) in enumerate(cost_over_time):
        print('Plan: {} | Cost: {:.3f} | Time: {:.3f}'.format(
            i, cost, runtime))
    #print(SOLUTIONS)
    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    with LockRenderer(lock=not args.enable):
        commands = post_process(problem, plan, teleport=args.teleport)
        saver.restore()

    draw_base_limits(problem.base_limits, color=(1, 0, 0))
    wait_for_user()
    if args.simulate:
        control_commands(commands)
    else:
        time_step = None if args.teleport else 0.01
        apply_commands(State(), commands, time_step)
    wait_for_user()
    disconnect()
Esempio n. 25
0
def main(display=True, simulate=False, teleport=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('-viewer',
                        action='store_true',
                        help='enable the viewer while planning')
    #parser.add_argument('-display', action='store_true', help='displays the solution')
    args = parser.parse_args()

    connect(use_gui=args.viewer)
    problem_fn = cooking_problem
    # holding_problem | stacking_problem | cleaning_problem | cooking_problem
    # cleaning_button_problem | cooking_button_problem
    with HideOutput():
        problem = problem_fn()
    state_id = save_state()
    #saved_world = WorldSaver()
    #dump_world()

    pddlstream_problem = pddlstream_from_problem(problem, teleport=teleport)

    stream_info = {
        'sample-pose': StreamInfo(PartialInputs('?r')),
        'inverse-kinematics': StreamInfo(PartialInputs('?p')),
        'plan-base-motion': StreamInfo(PartialInputs('?q1 ?q2')),
        'MoveCost': FunctionInfo(opt_move_cost_fn),
    }

    synthesizers = [
        StreamSynthesizer(
            'safe-base-motion', {
                'plan-base-motion': 1,
                'TrajPoseCollision': 0,
                'TrajGraspCollision': 0,
                'TrajArmCollision': 0,
            }, from_fn(get_base_motion_synth(problem, teleport))),
    ] if USE_SYNTHESIZERS else []

    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    print('Streams:', stream_map.keys())
    print('Synthesizers:', synthesizers)

    pr = cProfile.Profile()
    pr.enable()
    solution = solve_focused(pddlstream_problem,
                             stream_info=stream_info,
                             synthesizers=synthesizers,
                             success_cost=INF)
    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    if plan is None:
        return
    if (not display) or (plan is None):
        disconnect()
        return

    commands = post_process(problem, plan)
    if args.viewer:
        restore_state(state_id)
    else:
        disconnect()
        connect(use_gui=True)
        with HideOutput():
            problem_fn()  # TODO: way of doing this without reloading?

    if simulate:
        enable_gravity()
        control_commands(commands)
    else:
        step_commands(commands, time_step=0.01)
    user_input('Finish?')
    disconnect()
Esempio n. 26
0
def main(display=True, teleport=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('-algorithm', default='incremental', help='Specifies the algorithm')
    parser.add_argument('-cfree', action='store_true', help='Disables collisions')
    parser.add_argument('-deterministic', action='store_true', help='Uses a deterministic sampler')
    parser.add_argument('-optimal', action='store_true', help='Runs in an anytime mode')
    parser.add_argument('-t', '--max_time', default=5*60, type=int, help='The max time')
    parser.add_argument('-viewer', action='store_true', help='enable the viewer while planning')
    args = parser.parse_args()
    print(args)

    #problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    #if args.problem not in problem_fn_from_name:
    #    raise ValueError(args.problem)
    #problem_fn = problem_fn_from_name[args.problem]
    connect(use_gui=args.viewer)
    with HideOutput():
        problem = problem_fn(collisions=not args.cfree)
    saver = WorldSaver()
    draw_base_limits(problem.limits, color=RED)

    pddlstream, edges = pddlstream_from_problem(problem, teleport=teleport)
    _, constant_map, _, stream_map, init, goal = pddlstream
    print('Constants:', constant_map)
    print('Init:', init)
    print('Goal:', goal)

    success_cost = 0 if args.optimal else INF
    max_planner_time = 10

    stream_info = {
        'compute-motion': StreamInfo(eager=True, p_success=0),
        'ConfConfCollision': FunctionInfo(p_success=1, overhead=0.1),
        'TrajConfCollision': FunctionInfo(p_success=1, overhead=1),
        'TrajTrajCollision': FunctionInfo(p_success=1, overhead=10),
        'TrajDistance': FunctionInfo(eager=True), # Need to eagerly evaluate otherwise 0 duration (failure)
    }

    pr = cProfile.Profile()
    pr.enable()
    with LockRenderer(False):
        if args.algorithm == 'incremental':
            solution = solve_incremental(pddlstream,
                                         max_planner_time=max_planner_time,
                                         success_cost=success_cost, max_time=args.max_time,
                                         start_complexity=INF,
                                         verbose=True, debug=True)
        elif args.algorithm == 'focused':
            solution = solve_focused(pddlstream, stream_info=stream_info,
                                      max_planner_time=max_planner_time,
                                      success_cost=success_cost, max_time=args.max_time,
                                      max_skeletons=None, bind=True, max_failures=INF,
                                      verbose=True, debug=True)
        else:
            raise ValueError(args.algorithm)

    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(25) # cumtime | tottime
    if plan is None:
        wait_for_user()
        return
    if (not display) or (plan is None):
        disconnect()
        return

    if not args.viewer:
        disconnect()
        connect(use_gui=True)
        with LockRenderer():
            with HideOutput():
                problem_fn() # TODO: way of doing this without reloading?
    saver.restore() # Assumes bodies are ordered the same way
    draw_edges(edges)

    state = BeliefState(problem)
    wait_for_user()
    #time_step = None if teleport else 0.01
    #with VideoSaver('video.mp4'):
    display_plan(problem, state, plan)
    wait_for_user()
    disconnect()