Esempio n. 1
0
    model.train_model(train,
                      pearson_corr=pearson_corr,
                      spearman_corr=spearman_corr,
                      mae=mean_absolute_error)
    result, model_outputs, wrong_predictions = model.eval_model(
        dev,
        pearson_corr=pearson_corr,
        spearman_corr=spearman_corr,
        mae=mean_absolute_error)
    predictions, raw_outputs = model.predict(test_sentence_pairs)
    dev['predictions'] = model_outputs
    test['predictions'] = predictions

dev = un_fit(dev, 'labels')
dev = un_fit(dev, 'predictions')
test = un_fit(test, 'predictions')
dev.to_csv(os.path.join(TEMP_DIRECTORY, RESULT_FILE),
           header=True,
           sep='\t',
           index=False,
           encoding='utf-8')
draw_scatterplot(dev, 'labels', 'predictions',
                 os.path.join(TEMP_DIRECTORY, RESULT_IMAGE), "Russian-English")
print_stat(dev, 'labels', 'predictions')
format_submission(df=test,
                  index=index,
                  language_pair="ru-en",
                  method="TransQuest",
                  path=os.path.join(TEMP_DIRECTORY, SUBMISSION_FILE),
                  index_type="Auto")
Esempio n. 2
0
                       args=transformer_config)
    model.train_model(train,
                      pearson_corr=pearson_corr,
                      spearman_corr=spearman_corr,
                      mae=mean_absolute_error)
    result, model_outputs, wrong_predictions = model.eval_model(
        dev,
        pearson_corr=pearson_corr,
        spearman_corr=spearman_corr,
        mae=mean_absolute_error)
    predictions, raw_outputs = model.predict(test_sentence_pairs)
    dev['predictions'] = model_outputs
    test['predictions'] = predictions

dev = un_fit(dev, 'labels')
dev = un_fit(dev, 'predictions')
test = un_fit(test, 'predictions')
dev.to_csv(os.path.join(TEMP_DIRECTORY, RESULT_FILE),
           header=True,
           sep='\t',
           index=False,
           encoding='utf-8')
draw_scatterplot(dev, 'labels', 'predictions',
                 os.path.join(TEMP_DIRECTORY, RESULT_IMAGE), "English-Chinese")
print_stat(dev, 'labels', 'predictions')
format_submission(df=test,
                  index=index,
                  language_pair="en-zh",
                  method="TransQuest",
                  path=os.path.join(TEMP_DIRECTORY, SUBMISSION_FILE))
Esempio n. 3
0
for dev, test, index, language in zip(dev_list, test_list, index_list,
                                      [*languages]):
    dev = un_fit(dev, 'labels')
    dev = un_fit(dev, 'predictions')
    test = un_fit(test, 'predictions')
    dev.to_csv(os.path.join(
        TEMP_DIRECTORY,
        RESULT_FILE.split(".")[0] + "_" + language + "." +
        RESULT_FILE.split(".")[1]),
               header=True,
               sep='\t',
               index=False,
               encoding='utf-8')
    draw_scatterplot(
        dev, 'labels', 'predictions',
        os.path.join(
            TEMP_DIRECTORY,
            RESULT_IMAGE.split(".")[0] + "_" + language + "." +
            RESULT_IMAGE.split(".")[1]), language)
    print_stat(dev, 'labels', 'predictions')

    if language == "RU-EN":
        format_submission(df=test,
                          index=index,
                          language_pair=language.lower(),
                          method="TransQuest",
                          path=os.path.join(
                              TEMP_DIRECTORY,
                              SUBMISSION_FILE.split(".")[0] + "_" + language +
                              "." + SUBMISSION_FILE.split(".")[1]),
                          index_type="Auto")