Esempio n. 1
0
def run_dataset(prob_label):
    """Run the experiment"""
    sample_source, n = get_sample_source(prob_label)

    # ///////  submit jobs //////////
    # create folder name string
    home = os.path.expanduser("~")
    foldername = os.path.join(home, "freqopttest_slurm", 'e%d'%ex)
    logger.info("Setting engine folder to %s" % foldername)

    # create parameter instance that is needed for any batch computation engine
    logger.info("Creating batch parameter instance")
    batch_parameters = BatchClusterParameters(
        foldername=foldername, job_name_base="e%d_"%ex, parameter_prefix="")

    # Use the following line if Slurm queue is not used.
    #engine = SerialComputationEngine()
    engine = SlurmComputationEngine(batch_parameters, do_clean_up=True)
    n_methods = len(method_job_funcs)
    # repetitions x  #methods
    aggregators = np.empty((reps, n_methods ), dtype=object)
    d = sample_source.dim()
    for r in range(reps):
        for mi, f in enumerate(method_job_funcs):
            # name used to save the result
            func_name = f.__name__
            fname = '%s-%s-J%d_r%d_d%d_a%.3f_trp%.2f.p' \
                %(prob_label, func_name, J, r, d, alpha, tr_proportion)
            if not is_rerun and glo.ex_file_exists(ex, prob_label, fname):
                logger.info('%s exists. Load and return.'%fname)
                test_result = glo.ex_load_result(ex, prob_label, fname)
                sra = SingleResultAggregator()
                sra.submit_result(SingleResult(test_result))

                aggregators[r, mi] = sra
            else:
                # result not exists or rerun
                job = Ex5Job(SingleResultAggregator(), prob_label, r, n, f)
                agg = engine.submit_job(job)
                aggregators[r, mi] = agg

    # let the engine finish its business
    logger.info("Wait for all call in engine")
    engine.wait_for_all()

    # ////// collect the results ///////////
    logger.info("Collecting results")
    test_results = np.empty((reps, n_methods), dtype=object)
    for r in range(reps):
        for mi, f in enumerate(method_job_funcs):
            logger.info("Collecting result (%s, r=%d)" % (f.__name__, r ))
            # let the aggregator finalize things
            aggregators[r, mi].finalize()

            # aggregators[i].get_final_result() returns a SingleResult instance,
            # which we need to extract the actual result
            test_result = aggregators[r, mi].get_final_result().result
            test_results[r, mi] = test_result

            func_name = f.__name__
            fname = '%s-%s-J%d_r%d_d%d_a%.3f_trp%.2f.p' \
                %(prob_label, func_name, J, r, d, alpha, tr_proportion)
            glo.ex_save_result(ex, test_result, prob_label, fname)

    func_names = [f.__name__ for f in method_job_funcs]
    func2labels = exglobal.get_func2label_map()
    method_labels = [func2labels[f] for f in func_names if f in func2labels]
    # save results 
    results = {'results': test_results, 'n': n, 'data_fname':label2fname[prob_label],
            'alpha': alpha, 'J': J, 'sample_source': sample_source, 
            'tr_proportion': 0.5, 'method_job_funcs': method_job_funcs, 
            'prob_label': prob_label, 'method_labels': method_labels}
    
    # class name 
    fname = 'ex%d-%s-me%d_J%d_rs%d_nma%d_d%d_a%.3f_trp%.2f.p' \
        %(ex, prob_label, n_methods, J, reps, n, d, alpha, tr_proportion)
    glo.ex_save_result(ex, results, fname)
    logger.info('Saved aggregated results to %s'%fname)
Esempio n. 2
0
def run_dataset(prob_label):
    """Run the experiment"""
    sample_source, n = get_sample_source(prob_label)

    # ///////  submit jobs //////////
    # create folder name string
    home = os.path.expanduser("~")
    foldername = os.path.join(home, "freqopttest_slurm", 'e%d' % ex)
    logger.info("Setting engine folder to %s" % foldername)

    # create parameter instance that is needed for any batch computation engine
    logger.info("Creating batch parameter instance")
    batch_parameters = BatchClusterParameters(foldername=foldername,
                                              job_name_base="e%d_" % ex,
                                              parameter_prefix="")

    # Use the following line if Slurm queue is not used.
    #engine = SerialComputationEngine()
    engine = SlurmComputationEngine(batch_parameters, do_clean_up=True)
    n_methods = len(method_job_funcs)
    # repetitions x  #methods
    aggregators = np.empty((reps, n_methods), dtype=object)
    d = sample_source.dim()
    for r in range(reps):
        for mi, f in enumerate(method_job_funcs):
            # name used to save the result
            func_name = f.__name__
            fname = '%s-%s-J%d_r%d_d%d_a%.3f_trp%.2f.p' \
                %(prob_label, func_name, J, r, d, alpha, tr_proportion)
            if not is_rerun and glo.ex_file_exists(ex, prob_label, fname):
                logger.info('%s exists. Load and return.' % fname)
                test_result = glo.ex_load_result(ex, prob_label, fname)
                sra = SingleResultAggregator()
                sra.submit_result(SingleResult(test_result))

                aggregators[r, mi] = sra
            else:
                # result not exists or rerun
                job = Ex5Job(SingleResultAggregator(), prob_label, r, n, f)
                agg = engine.submit_job(job)
                aggregators[r, mi] = agg

    # let the engine finish its business
    logger.info("Wait for all call in engine")
    engine.wait_for_all()

    # ////// collect the results ///////////
    logger.info("Collecting results")
    test_results = np.empty((reps, n_methods), dtype=object)
    for r in range(reps):
        for mi, f in enumerate(method_job_funcs):
            logger.info("Collecting result (%s, r=%d)" % (f.__name__, r))
            # let the aggregator finalize things
            aggregators[r, mi].finalize()

            # aggregators[i].get_final_result() returns a SingleResult instance,
            # which we need to extract the actual result
            test_result = aggregators[r, mi].get_final_result().result
            test_results[r, mi] = test_result

            func_name = f.__name__
            fname = '%s-%s-J%d_r%d_d%d_a%.3f_trp%.2f.p' \
                %(prob_label, func_name, J, r, d, alpha, tr_proportion)
            glo.ex_save_result(ex, test_result, prob_label, fname)

    func_names = [f.__name__ for f in method_job_funcs]
    func2labels = exglobal.get_func2label_map()
    method_labels = [func2labels[f] for f in func_names if f in func2labels]
    # save results
    results = {
        'results': test_results,
        'n': n,
        'data_fname': label2fname[prob_label],
        'alpha': alpha,
        'J': J,
        'sample_source': sample_source,
        'tr_proportion': tr_proportion,
        'method_job_funcs': method_job_funcs,
        'prob_label': prob_label,
        'method_labels': method_labels
    }

    # class name
    fname = 'ex%d-%s-me%d_J%d_rs%d_nma%d_d%d_a%.3f_trp%.2f.p' \
        %(ex, prob_label, n_methods, J, reps, n, d, alpha, tr_proportion)
    glo.ex_save_result(ex, results, fname)
    logger.info('Saved aggregated results to %s' % fname)
Esempio n. 3
0
            test_result = aggregators[r, mi].get_final_result().result
            if isinstance(test_result, SingleResult):
                test_result = test_result.result
            if isinstance(test_result, SingleResult):
                test_result = test_result.result
            if isinstance(test_result, SingleResult):
                test_result = test_result.result
            test_results[r, mi] = test_result

            func_name = f.__name__
            fname = '%s-%s-J%d_r%d_d%d_a%.3f_trp%.2f.p' \
                %(prob_label, func_name, J, r, d, alpha, tr_proportion)
            glo.ex_save_result(ex, test_result, prob_label, fname)

    func_names = [f.__name__ for f in method_job_funcs]
    func2labels = exglobal.get_func2label_map()
    method_labels = [func2labels[f] for f in func_names if f in func2labels]
    # save results 
    results = {'results': test_results, 'n': n, 'data_fname':label2fname[prob_label],
            'alpha': alpha, 'J': J, 'sample_source': sample_source, 
            'tr_proportion': tr_proportion, 'method_job_funcs': method_job_funcs, 
            'prob_label': prob_label, 'method_labels': method_labels}
    
    # class name 
    fname = 'ex%d-%s-me%d_J%d_rs%d_nma%d_d%d_a%.3f_trp%.2f.p' \
        %(ex, prob_label, n_methods, J, reps, n, d, alpha, tr_proportion)
    glo.ex_save_result(ex, results, fname)
    logger.info('Saved aggregated results to %s'%fname)


if __name__ == '__main__':