Esempio n. 1
0
def bayesian_search(xmat,
                    y,
                    theta,
                    p,
                    xinit,
                    acq_func,
                    bounds=None,
                    constraints=None):
    """
    Search best point to sample by maximizing acquisition function

    Args:
        xmat (numpy.ndarray) : the data points so far, shape = (n, k)
        y (numpy.ndarray) : y, shape=(n, 1)
        theta (numpy.ndarray) : vector of theta params, one by dim, shape = (k, )
        p (numpy.ndarray) : powers used to compute the distance, one by dim, shape = (k, )
        xinit (numpy.ndarray) : initial value for acquisition maximization, shape = (k, )
        acq_func : Instance of one of the classes in Acquisition_Functions.py file
        bounds (tuple) : bounds for acquisition maximization in scipy

    Returns:
        numpy.ndarray. The new point to sample from given the data so far
    """
    R = exp_kernel.kernel_mat(xmat, theta, p)
    Rinv = cho_inv.cholesky_inv(R)
    beta_hat = pred.beta_est(y, Rinv)
    opti_result = am.opti_acq_func(xmat, y, Rinv, beta_hat, theta, p, xinit,
                                   acq_func, bounds)
    return opti_result
Esempio n. 2
0
def prediction_function_krigging(xnew, y, xmat, theta_vec, p_vec):
    R = exp_kernel.kernel_mat(xmat, theta_vec, p_vec)
    Rinv = cho_inv.cholesky_inv(R)
    beta_hat = pred.beta_est(y, Rinv)
    rx = exp_kernel.kernel_rx(xmat, xnew, theta_vec, p_vec)
    y_hat = pred.y_est(rx, y, Rinv, beta_hat)
    return y_hat
def bayesian_opti_plot_1d(xmat,
                          y,
                          n_it,
                          theta,
                          p,
                          acq_func,
                          objective_func,
                          bounds=None):
    for i in range(0, n_it):
        print(i)
        xinit = initial.xinit_inbounds(bounds)
        if acq_func.name == "EI":
            acq_func.set_fmin(np.min(y))
        opti_result = bayesian_search(xmat, y, theta, p, xinit, acq_func,
                                      bounds)
        xnew = opti_result.x
        R = exp_kernel.kernel_mat(xmat, theta, p)
        Rinv = cho_inv.cholesky_inv(R)
        beta_hat = pred.beta_est(y, Rinv)
        axes = viz.bayes_opti_plot_1d(xmat,
                                      y,
                                      Rinv,
                                      beta_hat,
                                      theta,
                                      p,
                                      bounds[0],
                                      grid_size=1000,
                                      acq_func=acq_func,
                                      objective_func=objective_func)
        y_acq = -opti_result.fun
        axes[1].vlines(xnew[0],
                       0,
                       y_acq,
                       linestyles='dashed',
                       colors='r',
                       linewidth=2)
        plt.show()
        xmat, y = evaluate_add(xmat, xnew, y, objective_func)
def bayesian_optimization(n, nb_it, p_vec, theta_vec, function2Bmin):

    # Ce serait bien de faire une fonction pour une iteration puis
    # de boucler en utilisant cette fonction "atomique" cf infra
    """
    Function for bayesian optimization with fixed p and theta

    Args:
        n (integer) : number of initial sampling observations
        nb_it (integer) : number of iteration of sampling
        theta_vec (numpy.ndarray) : vector of theta params, one by dim, shape = (2, )
        p_vec (numpy.ndarray) : powers used to compute the distance, one by dim, shape = (2, )

    Returns:
        float. Minimum evaluation of the fonction to be minimized
        numpy.ndarray Point minimizing the function to be minimized

        """
    xtest = 5 * np.random.rand(n, 2)
    y = np.zeros((n, 1))
    for i in range(0, n):
        y[i, 0] = test_func.mystery_vec(xtest[i, :])

    for it in range(0, nb_it):

        R = exp_kernel.kernel_mat(xtest, theta_vec, p_vec)
        Rinv = cho_inv.cholesky_inv(R)
        beta = pred.beta_est(y, Rinv)
        xinit = 5 * np.random.rand(1, 2)
        optiEI = af.max_EI(xtest, y, Rinv, beta, theta_vec, p_vec, xinit,
                           function2Bmin)
        xnew = optiEI["x"].reshape(1, 2)
        ynew = np.array(function2Bmin(xnew.reshape(2, 1))).reshape(1, 1)
        xtest = np.concatenate((xtest, xnew), axis=0)
        y = np.concatenate((y, ynew))
        print(it)

    return min(y), y, xtest[np.argmin(y), ], xtest
Esempio n. 5
0
def log_likelihood(xmat, y, params_vec):
    """
    Log likelihood

    Args :
        xmat (numpy.ndarray) : shape = (n, k)
        y (numpy.ndarray) : shape = (n, 1)
        params_vec (numpy.ndarray) : shape = (2*k, )

        Returns :
        float. log likelihood
    """
    theta_vec, p_vec = params_to_vec(params_vec)
    R = exp_kernel.kernel_mat(xmat, theta_vec, p_vec)
    n = R.shape[0]
    Rinv = cho_inv.cholesky_inv(R)
    detR = np.linalg.det(R)
    hat_sigz_sqr = hat_sigmaz_sqr_mle(y, Rinv)
    # print("Theta vec" + str(theta_vec))
    # print("p_vec" + str(p_vec))
    # print("sigma " + str(hat_sigz_sqr))
    # print("Det " + str(detR))
    return -0.5 * (n * math.log(hat_sigz_sqr) + math.log(detR))
Esempio n. 6
0
if perform_mle:
    opti = max_llk.max_log_likelihood(
        xmat,
        y,
        params_init,
        fixed_p=False,
        mins_list=[0.01, 0.01, 0.1, 0.1],
        maxs_list=[None, None, 1.99, 1.99])
    print(opti)
    theta_vec = opti.x[0:d]
    p_vec = opti.x[d:]

# Plot of initial acquisition function in 2d
if plot_acq_2d and (d == 2):
    # Computation of the necessaries quantities
    R = exp_kernel.kernel_mat(xmat, theta_vec, p_vec)
    Rinv = cho_inv.cholesky_inv(R)
    beta = pred.beta_est(y, Rinv)
    # Plot acq_func1
    viz.plot_acq_func_2d(xmat,
                         y,
                         Rinv,
                         beta,
                         theta_vec,
                         p_vec,
                         bounds,
                         (100, 100),
                         acq_func1)
    # Plot acq_func2
    viz.plot_acq_func_2d(xmat,
                         y,