Esempio n. 1
0
def test_ilp():
    try:
        import gurobipy as _
    except ImportError as e:
        logging.exception(e)
        logging.warning("Continuing with tests, gurobi not installed")
        return
    from checkmate.core.solvers.strategy_optimal_ilp import solve_ilp_gurobi
    for graph_length in test_points:
        g = gen_linear_graph(graph_length)
        assert g.size == 2 * graph_length + 1
        total_cost = sum(g.cost_ram.values())
        scheduler_result = solve_ilp_gurobi(g,
                                            total_cost,
                                            print_to_console=False,
                                            write_log_file=None)
        assert scheduler_result.feasible
        if SAVE_DEBUG_PLOTS:
            for budget in np.arange(0, 1, 0.25):
                scheduler_result = solve_ilp_gurobi(g,
                                                    total_cost * budget,
                                                    print_to_console=False,
                                                    write_log_file=None,
                                                    time_limit=15)
                if scheduler_result.feasible:
                    plot_schedule(
                        scheduler_result,
                        save_file="/tmp/test_checkmate/plot_ilp/{}_{}.png".
                        format(graph_length, budget))
Esempio n. 2
0
def test_checkpoint_all_ap():
    for graph_length in test_points:
        g = gen_linear_graph(graph_length)
        assert g.size == 2 * graph_length + 1
        scheduler_result = solve_checkpoint_all_ap(g)
        assert scheduler_result.feasible
        if SAVE_DEBUG_PLOTS:
            plot_schedule(
                scheduler_result,
                save_file="/tmp/test_checkmate/plot_checkpoint_all_ap/{}.png".
                format(graph_length))
Esempio n. 3
0
def test_chen_sqrtn():
    for graph_length in test_points:
        g = gen_linear_graph(graph_length)
        assert g.size == 2 * graph_length + 1
        total_cost = sum(g.cost_ram.values())
        scheduler_result = solve_chen_sqrtn(g, total_cost)
        assert scheduler_result.feasible
        if SAVE_DEBUG_PLOTS:
            plot_schedule(
                scheduler_result,
                save_file="/tmp/test_checkmate/plot_chen_sqrtn/{}.png".format(
                    graph_length))
Esempio n. 4
0
def test_chen_greedy_ap():
    for graph_length in [2, 4, 5, 7, 8]:
        g = gen_linear_graph(graph_length)
        assert g.size == 2 * graph_length + 1
        total_cost = sum(g.cost_ram.values())
        scheduler_result = solve_chen_greedy(g, total_cost, True)
        assert scheduler_result.feasible
        if SAVE_DEBUG_PLOTS:
            for budget in np.arange(0, 1, 0.1):
                scheduler_result = solve_chen_greedy(g, total_cost * budget,
                                                     False)
                if scheduler_result.feasible:
                    plot_schedule(
                        scheduler_result,
                        save_file=
                        "/tmp/test_checkmate/plot_chen_greedy_ap/{}_{}.png".
                        format(graph_length, budget))
    bs_futures = defaultdict(list)  # type: Dict[int, List]
    bs_fwd2xcost = {}  # type: Dict[int, int]
    # load model at batch size
    g = dfgraph_from_keras(model,
                           batch_size=1,
                           cost_model=cost_model,
                           loss_cpu_cost=0,
                           loss_ram_cost=(4))
    plot_dfgraph(g, log_base, name=model_name)

    model_file = str(log_base / "max_bs_{}.mps".format(model_name))
    param_dict = {
        "LogToConsole": 1,
        "LogFile": str(log_base / "max_bs_{}.solve.log".format(model_name)),
        "Threads": os.cpu_count(),
        "TimeLimit": math.inf,
    }
    ilp_solver = MaxBatchILPSolver(
        g,
        budget=platform_memory("p32xlarge") - g.cost_ram_fixed,
        model_file=model_file,
        gurobi_params=param_dict,
        cpu_fwd_factor=2,
    )
    ilp_solver.build_model()
    result, batch_size = ilp_solver.solve()
    logging.info("Max batch size = {}".format(batch_size))

    save_file = log_base / "{}_plot.png".format(model)
    plot_schedule(result, plot_mem_usage=True, save_file=save_file)
        scratch_dir = (
            checkmate_data_dir()
            / "scratch_integrality_gap_linear"
            / "{}_layers".format(N)
            / str(IMPOSED_SCHEDULE)
            / "{}_budget".format(B)
        )
        scratch_dir.mkdir(parents=True, exist_ok=True)
        data = []

        logging.error("Skipping Griewank baselines as it was broken in parasj/checkmate#65")
        # griewank = solve_griewank(g, B)

        logging.info("--- Solving LP relaxation for lower bound")
        lb_lp = lower_bound_lp_relaxation(g, B, approx=APPROX, eps_noise=EPS_NOISE, imposed_schedule=IMPOSED_SCHEDULE)
        plot_schedule(lb_lp, False, save_file=scratch_dir / "CHECKMATE_LB_LP.png")

        logging.info("--- Solving ILP")
        ilp = solve_ilp_gurobi(g, B, approx=APPROX, eps_noise=EPS_NOISE, imposed_schedule=IMPOSED_SCHEDULE, solve_r=SOLVE_R)
        ilp_feasible = ilp.schedule_aux_data.activation_ram <= B
        plot_schedule(ilp, False, save_file=scratch_dir / "CHECKMATE_ILP.png")

        integrality_gap = ilp.schedule_aux_data.cpu / lb_lp.schedule_aux_data.cpu
        speedup = ilp.solve_time_s / lb_lp.solve_time_s

        approx_ratio_actual, approx_ratio_ub = float("inf"), float("inf")
        try:
            logging.info("--- Solving deterministic rounting of LP")
            approx_lp_determinstic = solve_approx_lp_deterministic_sweep(
                g, B, approx=APPROX, eps_noise=EPS_NOISE, imposed_schedule=IMPOSED_SCHEDULE
            )
                               loss_ram_cost=(4 * args.batch_size))

    common_kwargs = dict(g=g,
                         budget=B,
                         print_to_console=False,
                         eps_noise=0,
                         approx=False)

    print("Common args:", common_kwargs)

    data = []

    # Checkpoint all
    scheduler_result_all = solve_checkpoint_all(g)
    plot_schedule(scheduler_result_all,
                  False,
                  save_file=scratch_dir / "ALL.png")
    data.append({
        "Strategy":
        str(scheduler_result_all.solve_strategy.value),
        "Name":
        "CHECKPOINT_ALL",
        "CPU":
        scheduler_result_all.schedule_aux_data.cpu,
        "Activation RAM":
        scheduler_result_all.schedule_aux_data.activation_ram,
    })

    if args.model_name in LINEAR_MODELS:
        # Sqrt(n)
        scheduler_result_sqrtn = solve_chen_sqrtn(g, True)
Esempio n. 8
0
import matplotlib.pyplot as plt

if __name__ == "__main__":
    N = 16
    for B in range(4, 12):
        # model = get_keras_model("MobileNet")
        # g = dfgraph_from_keras(mod=model)
        g = gen_linear_graph(N)
        scratch_dir = checkmate_data_dir() / "scratch_linear" / str(N) / str(B)
        scratch_dir.mkdir(parents=True, exist_ok=True)
        data = []

        scheduler_result_all = solve_checkpoint_all(g)
        scheduler_result_sqrtn = solve_chen_sqrtn(g, True)
        plot_schedule(scheduler_result_all,
                      False,
                      save_file=scratch_dir / "CHECKPOINT_ALL.png")
        plot_schedule(scheduler_result_sqrtn,
                      False,
                      save_file=scratch_dir / "CHEN_SQRTN.png")
        data.append({
            "Strategy":
            str(scheduler_result_all.solve_strategy.value),
            "Name":
            "CHECKPOINT_ALL",
            "CPU":
            scheduler_result_all.schedule_aux_data.cpu,
            "Activation RAM":
            scheduler_result_all.schedule_aux_data.activation_ram,
        })
        data.append({