import experiments as exp import modifier as mdf import re paths=['swSims.p','swSimsL.p','dmSims.p','dmSimsL.p',\ 'lengthSims.p'] names=['swAlign','swAlign-Length','directMatch',\ 'directMatchL','lengthOnly'] netpath='netdata.p' (edges,ciss,proms)=exp.getPickle(netpath) filt1=[] filt2=[] #ratio=0.99 #filt1=mdf.random_remove(edges.keys(),ratio) ''' for cis in ciss.keys(): entry=ciss[cis] target=entry.promname target= re.sub(r'p\d?$','',target).upper() source=entry.tfname.upper() if not (source,target) in filt1: filt1.append((source,target)) for elem in filt1: print elem[0],'R',elem[1]
import experiments as exp from yxtools import dictInsert import math import matplotlib.pyplot as plt import operator (edges,ciss,proms)=exp.getPickle('netdata.p') transactions=exp.getTS(edges,ciss,proms) rules=exp.getAssoc(transactions,min_s=2,\ min_c=0.5) # Determine the relationship between support and # size of frequent itemset (perfs,maks)=exp.evalCisCollection(rules,weighted=True) ''' y=[[],[],[],[],[]] for i in perfs.keys(): for elem in perfs[i]: y[i-1].append(elem) ''' x=[] for key in maks.keys(): x.append(len(maks[key][0])+1) plt.hist(x) plt.show()