Esempio n. 1
0
def nparams(args):
    assert Experiment.is_exp_dir(args.run), "Not a run dir: args.run"
    run = Experiment.from_dir(args.run, main='model')
    model = load_model(run)
    print(run)

    nparams = sum(p.numel() for p in tqdm(model.parameters()) if p.requires_grad)
    print(f'N. Params: {nparams / 10 ** 6:.2g}M ({nparams})')
Esempio n. 2
0
def retrieval(args):
    assert Experiment.is_exp_dir(args.run), "Not a run dir: args.run"
    run = Experiment.from_dir(args.run, main='model')
    results_file = run.path_to('retrieval.csv')

    assert os.path.exists(results_file), f"Results file not found: {results_file}"

    results = pd.read_csv(results_file)
    # t1s, mean_aps_sym, mean_aps_asym = results.loc[:, ['t1', 'mean_ap_sym', 'mean_ap_asym']]

    plt.figure(figsize=(15,5))
    ax = plt.gca()
    results.plot('t1', 'mean_ap_sym', marker='.', label='sym', ax=ax)
    results.plot('t1', 'mean_ap_asym', marker='.', label='asym', ax=ax)
    # plt.axhline(mean_ap_res, c='k', label='resnet')
    max_diff = (results.mean_ap_asym - results.mean_ap_sym).max()
    print(f'Asym-sym max difference: {max_diff:%}')
    # plt.plot(t1s, mean_aps_asym - mean_aps_sym, marker='.', label='diff')

    plt.title('mAP vs Feature Depth (t) - CIFAR-10')
    plt.xlabel('Integration time')
    plt.ylabel('mAP')
    # plt.ylim([0, 1])
    plt.legend(loc='best')

    ''' NFE sectioning
    ns = np.diff(nfe)
    xv = np.diff(t1s)/2
    xv[1:] += t1s[1:-1]
    xv = xv[ns != 0]

    for x in xv:
        plt.axvline(x, c='k', ls='--')

    xv = np.array([0, ] + xv.tolist() + [1,])
    xl = np.diff(xv) / 2
    xl[1:] += xv[1:-1]

    for x, n in zip(xl, np.unique(nfe)):
        plt.annotate('NFE = {:.1f}'.format(n), (x, .2), rotation=90, ha='center', va='center')
    '''

    plt.savefig(args.output, bbox_inches="tight")
Esempio n. 3
0
def nfe(args):
    assert Experiment.is_exp_dir(args.run), "Not a run dir: args.run"
    exp = Experiment.from_dir(args.run, main='model')
    nfe = pd.read_csv(exp.path_to('nfe.csv.gz'))  #, index_col=0)
    nfe = nfe[(nfe.t1 == 1) & (nfe.tol == 0.001)].reset_index(drop=True)
    nfe.nfe = (nfe.nfe - 2) / 6  # show n. steps instead of NFE

    nfe = nfe[nfe.y_true == nfe.y_pred]

    dataset = exp.params.dataset.iloc[0]
    if dataset == 'mnist':
        labels = [str(i) for i in range(10)]
    elif dataset == 'cifar10':
        labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

    nfe.y_true = nfe.y_true.apply(lambda x: labels[x])
    nfe = nfe.sort_values('y_true')
    # g = sns.FacetGrid(nfe, col='y_true')
    # g.map(sns.kdeplot, 'nfe')
    # ax = sns.boxplot(y='y_true', x='nfe', data=nfe, orient='h')
    # ax.set_xlabel('solver steps')
    # ax.set_ylabel('image class')
    
    print('{:.2g} \pm {:.2g}'.format(nfe.nfe.mean(), nfe.nfe.std()))

    min, max = nfe.nfe.min(), nfe.nfe.max()
    values = np.arange(min, max + 1)
    plt.xticks(values)
    bins = values - .5
    plt.xlim(bins[0], bins[-1])
    counts, _, _ = plt.hist(nfe.nfe, bins=bins)
    plt.grid(b=False, axis='x')
    plt.grid(b=True, which='minor', linewidth=0.5, linestyle='--', axis='y')
    plt.gca().get_yaxis().set_minor_locator(matplotlib.ticker.AutoMinorLocator())

    for v, c in zip(values, counts):
        plt.text(v, c, f'{c:g}', ha='center', va='bottom')

    plt.savefig(args.output, bbox_inches="tight")
    plt.close()

    """ Images """
    sns.set_style('white')

    n = 5
    pad = 20
    side = 28 if dataset == 'mnist' else 32
    side += 2  # make_grid padding
    groups = nfe.groupby('y_true')

    test_data = load_test_data(exp)
    test_data.transform = transforms.ToTensor()

    largest_nfe = groups.nfe.nlargest(n)
    high_nfe_idxs = largest_nfe.index.get_level_values(1)
    high_nfe_images = torch.stack([test_data[i][0] for i in high_nfe_idxs])
    high_nfe_grid = make_grid(high_nfe_images, nrow=n)

    smallest_nfe = groups.nfe.nsmallest(n).reset_index().sort_values(['y_true', 'nfe'], ascending=[True, False])
    low_nfe_idxs = smallest_nfe.level_1  # nsmallest in reverse order
    low_nfe_images = torch.stack([test_data[i][0] for i in low_nfe_idxs])
    low_nfe_grid = make_grid(low_nfe_images, nrow=n)
    smallest_nfe = smallest_nfe.nfe

    grid_h = low_nfe_grid.shape[1]
    img_pad = torch.zeros((3, grid_h, pad))
    grid = torch.cat((high_nfe_grid, img_pad, low_nfe_grid), 2)

    plt.imshow(np.transpose(grid.numpy(), (1, 2, 0)))  # , interpolation='nearest')
    for i, (l, s) in enumerate(zip(largest_nfe, smallest_nfe)):
        y, x = (i // n), (i % n)
        y, x = (np.array((y, x)) + (0.8, 0.75)) * side
        text = plt.text(x, y, str(int(l)), fontsize=5, ha='left', va='top', color='white')
        text.set_path_effects([patheffects.Stroke(linewidth=1, foreground='black'), patheffects.Normal()])

        disp = side * n + pad + 6
        text = plt.text(x + disp, y, str(int(s)), fontsize=5, ha='left', va='top', color='white')
        text.set_path_effects([patheffects.Stroke(linewidth=1, foreground='black'), patheffects.Normal()])

    ax = plt.gca()
    h, _ = ax.get_ylim()
    ticks = (np.arange(10) / 10 + 1 / (2 * 10)) * h
    plt.yticks(ticks, labels)

    plt.xticks([])
    h, htxt = -0.03, -0.08
    ax.annotate('', xy=(0, h), xycoords='axes fraction', xytext=(1, h), arrowprops=dict(arrowstyle="<->", color='k'))
    ax.annotate('high NFE', xy=(0, htxt), xycoords='axes fraction', xytext=(0, htxt))
    ax.annotate('low NFE', xy=(1, htxt), xycoords='axes fraction', xytext=(0.87, htxt))

    plt.savefig(args.output2, bbox_inches="tight")
Esempio n. 4
0
def nfe(args):
    assert Experiment.is_exp_dir(args.run), "Not a run dir: args.run"
    runs = Experiment.from_dir(args.run, main='model')
    nfe = pd.read_csv(runs.path_to('nfe.csv'), index_col=0)
    sns.boxplot(x='y_true', y='nfe', data=nfe)
    plt.savefig(args.output, bbox_inches="tight")