def test_sigmoid():
    """Test sigmoidal fitting and generation
    """
    n_pts = 1000
    x = np.random.randn(n_pts)
    p0 = (0., 1., 0., 1.)
    y = ea.sigmoid(x, *p0)
    assert_true(np.all(np.logical_and(y <= 1, y >= 0)))
    p = ea.fit_sigmoid(x, y)
    assert_allclose(p, p0, atol=1e-4, rtol=1e-4)

    y += np.random.rand(n_pts) * 0.01
    p = ea.fit_sigmoid(x, y)
    assert_allclose(p, p0, atol=0.1, rtol=0.1)
Esempio n. 2
0
def test_sigmoid():
    """Test sigmoidal fitting and generation."""
    n_pts = 1000
    x = np.random.randn(n_pts)
    p0 = (0., 1., 0., 1.)
    y = ea.sigmoid(x, *p0)
    assert_true(np.all(np.logical_and(y <= 1, y >= 0)))
    p = ea.fit_sigmoid(x, y)
    assert_allclose(p, p0, atol=1e-4, rtol=1e-4)
    p = ea.fit_sigmoid(x, y, (0, 1, None, None), ('upper', 'lower'))
    assert_allclose(p, p0, atol=1e-4, rtol=1e-4)

    y += np.random.rand(n_pts) * 0.01
    p = ea.fit_sigmoid(x, y)
    assert_allclose(p, p0, atol=0.1, rtol=0.1)
Esempio n. 3
0
def test_sigmoid():
    """Test sigmoidal fitting and generation."""
    n_pts = 1000
    x = np.random.RandomState(0).randn(n_pts)
    p0 = (0., 1., 0., 1.)
    y = ea.sigmoid(x, *p0)
    assert np.all(np.logical_and(y <= 1, y >= 0))
    p = ea.fit_sigmoid(x, y)
    assert_allclose(p, p0, atol=1e-4, rtol=1e-4)
    with pytest.warns(None):  # scipy convergence
        p = ea.fit_sigmoid(x, y, (0, 1, None, None), ('upper', 'lower'))
    assert_allclose(p, p0, atol=1e-4, rtol=1e-4)

    y += np.random.rand(n_pts) * 0.01
    p = ea.fit_sigmoid(x, y)
    assert_allclose(p, p0, atol=0.1, rtol=0.1)
Esempio n. 4
0
def test_sigmoid():
    """Test sigmoidal fitting and generation."""
    n_pts = 1000
    x = np.random.RandomState(0).randn(n_pts)
    p0 = (0., 1., 0., 1.)
    y = ea.sigmoid(x, *p0)
    assert np.all(np.logical_and(y <= 1, y >= 0))
    p = ea.fit_sigmoid(x, y)
    assert_allclose(p, p0, atol=1e-4, rtol=1e-4)
    with pytest.warns(None):  # scipy convergence
        p = ea.fit_sigmoid(x, y, (0, 1, None, None), ('upper', 'lower'))
    assert_allclose(p, p0, atol=1e-4, rtol=1e-4)

    y += np.random.rand(n_pts) * 0.01
    p = ea.fit_sigmoid(x, y)
    assert_allclose(p, p0, atol=0.1, rtol=0.1)
Esempio n. 5
0
from expyfun.analyze import sigmoid


# Make a callback function that prints to the console, rather than log file
def callback(event_type, value=None, timestamp=None):
    print((str(event_type) + ':').ljust(40) + str(value))


# Define parameters for modeled human subject (sigmoid probability)
true_thresh = 115
slope = 0.8
chance = 0.08  # if you don't hear it, you don't respond

# Make a tracker that uses the weighted up-down procedure to find 75%
tr = TrackerMHW(callback, 0, 120, base_step=5, start_value=80)

# Initialize human state
rng = np.random.RandomState(1)

# Do the task until the tracker stops
while not tr.stopped:
    tr.respond(rng.rand() < sigmoid(
        tr.x_current - true_thresh, lower=chance, slope=slope))

# Plot the results
fig, ax, lines = tr.plot()
lines += tr.plot_thresh()

ax.set_title(
    'Adaptive track of model human (true threshold is {})'.format(true_thresh))
Esempio n. 6
0
# acquired.

# initialize two tracker objects--one for each start value
tr_ud = [TrackerUD(callback, up, down, step_size_up, step_size_down,
                   stop_reversals, stop_trials, sv, change_indices,
                   change_rule, x_min, x_max) for sv in start_value]

# initialize TrackerDealer object
td = TrackerDealer(callback, tr_ud, max_lag, pace_rule, rng_dealer)

# Initialize human state
rng_human = np.random.RandomState(1)  # random seed for modeled subject

for _, level in td:
    # Get information of which trial type is next and what the level is at
    # that time from TrackerDealer
    td.respond(rng_human.rand() < sigmoid(level - true_thresh,
                                          lower=chance, slope=slope))

##############################################################################
# Plotting the Results
# ---------------------------
axes = plt.subplots(2, 1)[1]
for i in [0, 1]:
    fig, ax, lines = td.trackers.ravel()[i].plot(ax=axes[i], n_skip=4)

    ax.legend(loc='best')
    ax.set_title('Adaptive track with start value {} (true threshold '
                 'is {})'.format(start_value[i], true_thresh))
    fig.tight_layout()
 def likelihood_3(params, x, y, upper, slope, lower):
     return np.sum((y - sigmoid(x, lower=lower, upper=upper, 
                                midpt=params[0], slope=slope))**2)
 def likelihood(params, x, y, lower):
     return np.sum((y - sigmoid(x, lower=lower, upper=params[2], 
                                midpt=params[0], slope=params[1]))**2)
    if w:
        print(':(')
    
    # do individual condition fits
    for (p, c, i) in zip(data, ['C0', 'C1'], range(2)):
        mid = [ok[0]]
        [temp, _, _, _, w] = fmin(likelihood_3, mid, 
                                  (conditions, p, ok[2], ok[1], lower), 
                                  full_output=True, disp=False)
        params.append(temp)
        if w:
            print(':\'(')
    thresholds = np.array([np.power(10, m / 20) for m in [params[0][0], params[1][0]]])
    thresholds = np.array([-1. / ok[1] * np.log((ok[2] - .5) / (.75 - .5) - 1) + p[0] for p in params])
    thresholds = np.power(10, thresholds / 20)
    perform_imp = (sigmoid(20 * np.log10(thresholds[0]), lower=.5, upper=ok[2], midpt=params[1][0], slope=ok[1]) - .75) * 100

    # %% save the data
    data = dict(responses=responses[-1],
                thresholds=thresholds,
                ok = ok,
                params=params,
                percent=percent,
                perform_imp = perform_imp)

    write_hdf5((path + 'percent_' + subject), data, overwrite=True)

    # %% plot an example
    if subject=='016':
        from collections import OrderedDict
        from matplotlib.transforms import blended_transform_factory
perform_imp = np.empty((len(subjects), 1))
data_resamp = np.empty((len(subjects), 1000, 2, 5))
responses = []
biases = []
d_prime = np.empty((len(subjects), 5))
stem_perimp = np.empty((len(subjects), 1000, 2))
stem_thimp = np.empty((len(subjects), 1000, 2))

for i, s in enumerate(subjects):
    data = read_hdf5(path + 'percent_' + s)
    responses.append(data['responses'])
    thresholds[i] = data['thresholds']
    per_cor[i] = data['percent']
    ok = data['ok']
    params = data['params']
    curves[i] = [sigmoid(20 * np.log10(x_plot_fit), lower=0.5, upper=ok[2],
                         midpt=p[0], slope=ok[1]) for p in params]
    perform_imp[i] = data['perform_imp']
    lapse[i] = [ok[2]]
    slope[i] = [ok[1]]
    thresh[i] = [params[0], params[1]]

percent = np.mean(per_cor, 0)

inds = np.argsort(thresholds[:, 0])

# %% Plot improvement in threshold at central threshold

dpi_fig = 200
dpi = 600

ms = 7