Esempio n. 1
0
    def train(self, train_generator):
        x, y = [], []
        for i, (image, mask) in enumerate(train_generator):
            point_generator = PointGeneratorBalanced(mask, self.__patch_count,
                                                     balance=self.__training_balance)
            feature_extractor = FeatureExtractor(image, self.__patch_size, point_generator)
            pixel_extractor = PixelExtractor(mask, point_generator)

            x.extend(feature_extractor.extract())
            y.extend(pixel_extractor.extract())

            stdout.write("\rTraining features: %.1f%%" % (100.0 * (i + 1) / train_generator.size))
            stdout.flush()
        stdout.write("\nTrain...")
        stdout.flush()
        self.__model.fit(x, y)
        stdout.write("\rTraining done\n")
Esempio n. 2
0
 def _inner_classify(self, input_image):
     point_generator = PointGeneratorAll(input_image.shape)
     feature_extractor = FeatureExtractor(input_image, self.__patch_size, point_generator)
     return self.__model.predict([*feature_extractor.extract()]).reshape(input_image.shape)