def make_measurement(c, ms: Sequence[Measurement]): if len(ms) == 1: measurement = copy.copy(ms[0]) measurement.coordinate = Coordinate(c) return measurement measurement = Measurement(Coordinate(c), ms[0].callpath, ms[0].metric, None) if self.use_median: value = np.mean([m.median for m in ms]) else: value = np.mean([m.mean for m in ms]) measurement.mean = value measurement.median = value if measurement.mean == 0: measurement.maximum = np.mean([m.maximum for m in ms]) measurement.minimum = np.mean([m.minimum for m in ms]) measurement.std = np.mean([m.std for m in ms]) else: measurement.maximum = np.nanmean([m.maximum / m.mean for m in ms]) * measurement.mean measurement.minimum = np.nanmean([m.minimum / m.mean for m in ms]) * measurement.mean measurement.std = np.nanmean([m.std / m.mean for m in ms]) * measurement.mean return measurement
def test_get_matching_hypotheses(self): modeler = SingleParameterModeler() modeler.hypotheses_building_blocks.append(CompoundTerm.create(1, 1, 1)) for bb in modeler.get_matching_hypotheses( [Measurement(Coordinate(15), None, None, 15), Measurement(Coordinate(0.1), None, None, 0.1)]): self.assertEqual(len(bb.simple_terms), 1) self.assertNotEqual(bb.simple_terms[0].term_type, 'logarithm') hbb = modeler.get_matching_hypotheses( [Measurement(Coordinate(31), None, None, 31), Measurement(Coordinate(1), None, None, 1)]) self.assertIn(2, (len(bb.simple_terms) for bb in hbb)) self.assertIn('logarithm', (bb.simple_terms[0].term_type for bb in hbb))
def test_modeling(self): for exponents in [ (0, 1, 1), (0, 1, 2), (1, 4, 0), (1, 3, 0), (1, 4, 1), (1, 3, 1), (1, 4, 2), (1, 3, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 3, 0), (3, 4, 0), (2, 3, 1), (3, 4, 1), (4, 5, 0), (2, 3, 2), (3, 4, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (5, 4, 0), (5, 4, 1), (4, 3, 0), (4, 3, 1), (3, 2, 0), (3, 2, 1), (3, 2, 2), (5, 3, 0), (7, 4, 0), (2, 1, 0), (2, 1, 1), (2, 1, 2), (9, 4, 0), (7, 3, 0), (5, 2, 0), (5, 2, 1), (5, 2, 2), (8, 3, 0), (11, 4, 0), (3, 1, 0), (3, 1, 1) ]: term = CompoundTerm.create(*exponents) term.coefficient = 10 function = SingleParameterFunction(term) function.constant_coefficient = 200 points = [2, 4, 8, 16, 32] values = function.evaluate(np.array(points)) measurements = [ Measurement(Coordinate(p), None, None, v) for p, v in zip(points, values) ] modeler = SingleParameterModeler() models = modeler.model([measurements]) self.assertEqual(1, len(models)) self.assertApproxFunction(function, models[0].hypothesis.function)
def test_modeling_4p(self): exponents = [(0, 1, 1), (0, 1, 2), (1, 4, 0), (1, 3, 0), (1, 4, 1), (1, 3, 1), (1, 4, 2), (1, 3, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 3, 0), (3, 4, 0), (2, 3, 1), (3, 4, 1), (4, 5, 0), (2, 3, 2), (3, 4, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (5, 4, 0), (5, 4, 1), (4, 3, 0), (4, 3, 1), (3, 2, 0), (3, 2, 1), (3, 2, 2), (5, 3, 0), (7, 4, 0), (2, 1, 0), (2, 1, 1), (2, 1, 2), (9, 4, 0), (7, 3, 0), (5, 2, 0), (5, 2, 1), (5, 2, 2), (8, 3, 0), (11, 4, 0), (3, 1, 0), (3, 1, 1)] points = np.array( list(zip(*itertools.product([2, 4, 8, 10, 12], repeat=4)))) for expo1, expo2, expo3, expo4 in zip(exponents, exponents[1:], exponents[2:], exponents[3:]): termX = CompoundTerm.create(*expo1) termY = CompoundTerm.create(*expo2) termZ = CompoundTerm.create(*expo3) termW = CompoundTerm.create(*expo4) term = MultiParameterTerm((0, termX), (1, termY), (2, termZ), (3, termW)) term.coefficient = 10 function = MultiParameterFunction(term) function.constant_coefficient = 20000 values = function.evaluate(points) measurements = [ Measurement(Coordinate(p), None, None, v) for p, v in zip(zip(*points), values) ] modeler = MultiParameterModeler() models = modeler.model([measurements]) self.assertEqual(1, len(models)) self.assertApproxFunction(function, models[0].hypothesis.function)
def test_modeling_plus(self): exponents = [(0, 1, 1), (0, 1, 2), (1, 4, 0), (1, 3, 0), (1, 4, 1), (1, 3, 1), (1, 4, 2), (1, 3, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 3, 0), (3, 4, 0), (2, 3, 1), (3, 4, 1), (4, 5, 0), (2, 3, 2), (3, 4, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (5, 4, 0), (5, 4, 1), (4, 3, 0), (4, 3, 1), (3, 2, 0), (3, 2, 1), (3, 2, 2), (5, 3, 0), (7, 4, 0), (2, 1, 0), (2, 1, 1), (2, 1, 2), (9, 4, 0), (7, 3, 0), (5, 2, 0), (5, 2, 1), (5, 2, 2), (8, 3, 0), (11, 4, 0), (3, 1, 0), (3, 1, 1)] for expo1, expo2 in zip(exponents, exponents[1:]): termX = CompoundTerm.create(*expo1) termY = CompoundTerm.create(*expo2) term1 = MultiParameterTerm((0, termX)) term1.coefficient = 10 term2 = MultiParameterTerm((1, termY)) term2.coefficient = 20 function = MultiParameterFunction(term1, term2) function.constant_coefficient = 200 points = [np.array([2, 4, 8, 16, 32, 2, 4, 8, 16, 32, 2, 4, 8, 16, 32, 2, 4, 8, 16, 32, 2, 4, 8, 16, 32]), np.array([2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32])] values = function.evaluate(np.array(points)) measurements = [Measurement(Coordinate(p), None, None, v) for p, v in zip(zip(*points), values)] modeler = MultiParameterModeler() models = modeler.model([measurements]) self.assertEqual(1, len(models)) self.assertApproxFunction(function, models[0].hypothesis.function)
def deserialize_ExperimentPoint(experiment, id_mappings, ioHelper): # coordinate_id = ioHelper.readId() # sampleCount = ioHelper.readInt() # mean = ioHelper.readValue() # meanCI_start = ioHelper.readValue() # meanCI_end = ioHelper.readValue() # standardDeviation = ioHelper.readValue() # median = ioHelper.readValue() # medianCI_start = ioHelper.readValue() # medianCI_end = ioHelper.readValue() # minimum = ioHelper.readValue() # maximum = ioHelper.readValue() # metricId = ioHelper.readId() # callpathId = ioHelper.readId() coordinate_id, sampleCount, \ mean, meanCI_start, meanCI_end, \ standardDeviation, \ median, medianCI_start, medianCI_end, \ minimum, maximum, metricId, callpathId = ioHelper.read_pattern('qqdddddddddqq') coordinate = id_mappings.coordinate_mapping[coordinate_id] metric = experiment.metrics[metricId] callpath = id_mappings.callpath_mapping[callpathId] point = Measurement(coordinate, callpath, metric, None) point.minimum = minimum point.maximum = maximum point.mean = mean point.median = median point.std = standardDeviation return point
def repetition_dict_to_experiment(complete_data, experiment, progress_bar=DUMMY_PROGRESS): progress_bar.step('Creating experiment') for mi, key in enumerate(complete_data): progress_bar.update() callpath, metric = key measurementset = complete_data[key] experiment.add_callpath(callpath) experiment.add_metric(metric) for coordinate in measurementset: values = measurementset[coordinate] experiment.add_coordinate(coordinate) experiment.add_measurement(Measurement(coordinate, callpath, metric, values))
def compute_cost(self, training_measurements: Sequence[Measurement], validation_measurement: Measurement): """ Compute the cost for the single-parameter model using leave one out crossvalidation. """ value = validation_measurement.coordinate[0] predicted = self.function.evaluate(value) actual = validation_measurement.value(self._use_median) difference = predicted - actual self._RSS += difference * difference if actual != 0: relative_difference = difference / actual self._RE += numpy.abs(relative_difference) / (len(training_measurements) + 1) self._rRSS += relative_difference * relative_difference abssum = abs(actual) + abs(predicted) if abssum != 0: self._SMAPE += (abs(difference) / abssum * 2) / \ len(training_measurements) * 100 self._costs_are_calculated = True
def _read_new_json_file(experiment, json_data, progress_bar): parameter_data = json_data["parameters"] for p in parameter_data: parameter = Parameter(p) experiment.add_parameter(parameter) measurements_data = json_data["measurements"] for callpath_name, data in progress_bar(measurements_data.items()): for metric_name, measurements in data.items(): for measurement in measurements: coordinate = Coordinate(measurement['point']) experiment.add_coordinate(coordinate) callpath = Callpath(callpath_name) experiment.add_callpath(callpath) metric = Metric(metric_name) experiment.add_metric(metric) measurement = Measurement(coordinate, callpath, metric, measurement['values']) experiment.add_measurement(measurement)
def read_cube_file(dir_name, scaling_type, pbar=DUMMY_PROGRESS, selected_metrics=None): # read the paths of the cube files in the given directory with dir_name path = Path(dir_name) if not path.is_dir(): raise FileFormatError( f'Cube file path must point to a directory: {dir_name}') cubex_files = list(path.glob('*/[!.]*.cubex')) if not cubex_files: raise FileFormatError(f'No cube files were found in: {dir_name}') pbar.total += len(cubex_files) + 6 # iterate over all folders and read the cube profiles in them experiment = Experiment() pbar.step("Reading cube files") parameter_names_initial = [] parameter_names = [] parameter_values = [] parameter_dict = defaultdict(set) progress_step_size = 5 / len(cubex_files) for path_id, path in enumerate(cubex_files): pbar.update(progress_step_size) folder_name = path.parent.name logging.debug(f"Cube file: {path} Folder: {folder_name}") # create the parameters par_start = folder_name.find(".") + 1 par_end = folder_name.find(".r") par_end = None if par_end == -1 else par_end parameters = folder_name[par_start:par_end] # parameters = folder_name.split(".") # set scaling flag for experiment if path_id == 0: if scaling_type == "weak" or scaling_type == "strong": experiment.scaling = scaling_type param_list = re.split('([0-9.,]+)', parameters) param_list.remove("") parameter_names = [n for i, n in enumerate(param_list) if i % 2 == 0] parameter_value = [ float(n.replace(',', '.').rstrip('.')) for i, n in enumerate(param_list) if i % 2 == 1 ] # check if parameter already exists if path_id == 0: parameter_names_initial = parameter_names elif parameter_names != parameter_names_initial: raise FileFormatError( f"Parameters must be the same and in the same order: {parameter_names} is not {parameter_names_initial}." ) for n, v in zip(parameter_names, parameter_value): parameter_dict[n].add(v) parameter_values.append(parameter_value) # determine non-constant parameters and add them to experiment parameter_selection_mask = [] for i, p in enumerate(parameter_names): if len(parameter_dict[p]) > 1: experiment.add_parameter(Parameter(p)) parameter_selection_mask.append(i) # check number of parameters, if > 1 use weak scaling instead # since sum values for strong scaling does not work for more than 1 parameter if scaling_type == 'strong' and len(experiment.parameters) > 1: warnings.warn( "Strong scaling only works for one parameter. Using weak scaling instead." ) scaling_type = 'weak' experiment.scaling = scaling_type pbar.step("Reading cube files") show_warning_skipped_metrics = set() aggregated_values = defaultdict(list) # import data from cube files # optimize import memory usage by reordering files and grouping by coordinate num_points = 0 reordered_files = sorted(zip(cubex_files, parameter_values), key=itemgetter(1)) for parameter_value, point_group in groupby(reordered_files, key=itemgetter(1)): num_points += 1 # create coordinate coordinate = Coordinate(parameter_value[i] for i in parameter_selection_mask) experiment.add_coordinate(coordinate) aggregated_values.clear() for path, _ in point_group: pbar.update() with CubexParser(str(path)) as parsed: callpaths = make_callpath_mapping(parsed.get_root_cnodes()) # iterate over all metrics for cube_metric in parsed.get_metrics(): pbar.update(0) # NOTE: here we could choose which metrics to extract if selected_metrics and cube_metric.name not in selected_metrics: continue try: metric_values = parsed.get_metric_values( metric=cube_metric, cache=False) # create the metrics metric = Metric(cube_metric.name) for cnode_id in metric_values.cnode_indices: pbar.update(0) cnode = parsed.get_cnode(cnode_id) callpath = callpaths[cnode_id] # NOTE: here we can use clustering algorithm to select only certain node level values # create the measurements cnode_values = metric_values.cnode_values( cnode, convert_to_exclusive=True) # in case of weak scaling calculate mean and median over all mpi process values if scaling_type == "weak": # do NOT use generator it is slower aggregated_values[(callpath, metric)].extend( map(float, cnode_values)) # in case of strong scaling calculate the sum over all mpi process values elif scaling_type == "strong": aggregated_values[(callpath, metric)].append( float(sum(cnode_values))) # Take care of missing metrics except MissingMetricError as e: # @UnusedVariable show_warning_skipped_metrics.add(e.metric.name) logging.info( f'The cubex file {Path(*path.parts[-2:])} does not contain data for the metric "{e.metric.name}"' ) # add measurements to experiment for (callpath, metric), values in aggregated_values.items(): pbar.update(0) experiment.add_measurement( Measurement(coordinate, callpath, metric, values)) pbar.step("Unify calltrees") to_delete = [] # determine common callpaths for common calltree # add common callpaths and metrics to experiment for key, value in pbar(experiment.measurements.items(), len(experiment.measurements), scale=0.1): if len(value) < num_points: to_delete.append(key) else: (callpath, metric) = key experiment.add_callpath(callpath) experiment.add_metric(metric) for key in to_delete: pbar.update(0) del experiment.measurements[key] # determine calltree call_tree = io_helper.create_call_tree(experiment.callpaths, pbar, progress_scale=0.1) experiment.call_tree = call_tree if show_warning_skipped_metrics: warnings.warn( "The following metrics were skipped because they contained no data: " f"{', '.join(show_warning_skipped_metrics)}. For more details see log." ) io_helper.validate_experiment(experiment, pbar) pbar.update() return experiment
def test_compare(self): points = [4, 8, 16, 32, 64, 128] data = [ ((None, (12.279235119728051 + 112.3997486813747, 0)), [ 124.67898380110276, 124.67898380110276, 124.67898380110276, 124.67898380110276, 124.67898380110276, 124.67898380110276 ], (None, (124.679, 0.0))), (((0, Fraction(1, 1)), (392.837968713381, 683.8645895889935)), [ 1760.5671478913678, 2444.4317374803613, 3128.296327069355, 3812.1609166583485, 4496.025506247342, 5179.890095836336 ], ((0.0, 1.0), (392.838, 683.865))), (((0, Fraction(2, 1)), (138.69179452369758, 112.44445041582443)), [ 588.4695961869953, 1150.6918482661176, 1937.8030011768885, 2949.803054919308, 4186.692009493378, 5648.469864899094 ], ((0.0, 2.0), (138.692, 112.444))), (((Fraction(1, 4), 0), (231.8031252715932, 757.5927278025262)), [ 1303.2010356851542, 1505.917143334448, 1746.9885808766455, 2033.672449625761, 2374.5989460987153, 2780.0311613973026 ], ((0.25, 0.0), (231.803, 757.593))), (((Fraction(1, 3), 0), (147.40207355905747, 740.6554582848072)), [ 1323.1193271863492, 1628.712990128672, 2013.7368787841829, 2498.836580813641, 3110.023906698286, 3880.071684009308 ], ((0.333333, 0.0), (147.402, 740.655))), (((Fraction(1, 4), Fraction(1, 1)), (662.1669933486077, 136.57938776640577)), [ 1048.4718383883378, 1351.2616987705137, 1754.802095479854, 2286.378790293861, 2979.9960635869884, 3877.9422853175015 ], ((0.25, 1.0), (662.167, 136.579))), (((Fraction(1, 3), Fraction(1, 1)), (535.6622118860412, 447.75148218635366)), [ 1957.1845595719178, 3222.171105004163, 5048.714352111772, 7643.273950315424, 11281.697784358528, 16331.344702676097 ], ((0.333333, 1.0), (535.662, 447.751))), (((Fraction(1, 4), Fraction(2, 1)), (412.5706706079675, 996.343695251814)), [ 6048.741737048133, 15493.363821169984, 32295.568918666017, 59655.521239685964, 101863.64986653095, 164625.65164339435 ], ((0.25, 2.0), (412.571, 996.344))), (((Fraction(1, 3), Fraction(2, 1)), (93.11229615417925, 20.367438006670188)), [ 222.43746622492063, 459.72618027424267, 914.2759402192239, 1709.6769220384463, 3026.0233691146855, 5122.739616052577 ], ((0.333333, 2.0), (93.1123, 20.3674))), (((Fraction(1, 2), 0), (939.8019758412179, 402.94640866510485)), [ 1745.6947931714276, 2079.5065279286637, 2551.5876105016373, 3219.2110800161095, 4163.373245162056, 5498.620184191001 ], ((0.5, 0.0), (939.802, 402.946))), (((Fraction(1, 2), Fraction(1, 1)), (198.49843369241415, 330.31007853365884)), [ 1519.7387478270496, 3001.272390797349, 5483.459690230956, 9541.078290708863, 16053.382203308038, 26357.722033338472 ], ((0.5, 1.0), (198.498, 330.31))), (((Fraction(1, 2), Fraction(2, 1)), (364.8953574839538, 955.112891429775)), [ 8005.798488922153, 24678.100241316602, 61492.120408989555, 135438.25582322088, 275437.4080892591, 529852.4683831728 ], ((0.5, 2.0), (364.895, 955.113))), (((Fraction(2, 3), 0), (210.3330694987003, 216.92681699057178)), [ 756.9543955249287, 1078.0403374609873, 1587.732499462487, 2396.8183736036135, 3681.1621413478483, 5719.930789353846 ], ((0.666667, 0.0), (210.333, 216.927))), (((Fraction(3, 4), 0), (584.9013580111865, 547.3819137326248)), [ 2133.1312104080216, 3188.7032237497583, 4963.956667872185, 7949.565182530901, 12970.740177185866, 21415.31628391976 ], ((0.75, 0.0), (584.901, 547.382))), (((Fraction(2, 3), Fraction(1, 1)), (953.7431095545323, 838.6830078923111)), [ 5180.440612885216, 11017.939204262264, 22254.963733492266, 43220.718142861355, 81467.31186721638, 150062.28747711863 ], ((0.666667, 1.0), (953.743, 838.683))), (((Fraction(3, 4), Fraction(1, 1)), (355.50475595529707, 203.8586065472728)), [ 1508.7031806978325, 3264.666020281983, 6878.980165468027, 14069.422473092825, 28032.266949776153, 54659.84835672009 ], ((0.75, 1.0), (355.505, 203.859))), (((Fraction(4, 5), 0), (836.4136945625079, 988.9778707606993)), [ 3834.433979810851, 6056.270190754812, 9924.711720732794, 16660.0596267337, 28386.981453862616, 48804.738258536 ], ((0.8, 0.0), (836.414, 988.978))), (((Fraction(2, 3), Fraction(2, 1)), (30.370684174349353, 735.0460670350777)), [ 7439.17078417381, 26492.029097437142, 74706.39628779484, 185250.37318416082, 423416.90529637906, 914811.6843285251 ], ((0.666667, 2.0), (30.3707, 735.046))), (((Fraction(3, 4), Fraction(2, 1)), (868.3557741916711, 651.1510359543278)), [ 8235.288783790882, 28745.079790529722, 84215.68837634563, 219888.5845432864, 531287.5324653349, 1215054.5573746935 ], ((0.75, 2.0), (868.356, 651.151))), (((Fraction(1, 1), 0), (218.35982887307853, 796.5944762009765)), [ 3404.7377336769846, 6591.11563848089, 12963.871448088703, 25709.383067304327, 51200.406305735574, 102182.45278259806 ], ((1.0, 0.0), (218.36, 796.594))), (((Fraction(1, 1), Fraction(1, 1)), (729.8185276288646, 193.81268721358396)), [ 2280.320025337536, 5381.323020754879, 13133.830509298237, 31739.8484818023, 75153.8904176451, 174385.9862710001 ], ((1.0, 1.0), (729.819, 193.813))), (((Fraction(1, 1), Fraction(2, 1)), (640.8857481060144, 219.18401331861853)), [ 4147.829961203911, 16422.13470704655, 56751.993157672354, 175988.09640300085, 505640.8524342031, 1375363.0172824815 ], ((1.0, 2.0), (640.886, 219.184))), (((Fraction(5, 4), 0), (41.41439439883205, 336.0107050284518)), [ 1942.1779790139603, 4562.217551923606, 10793.75695530929, 25614.93894716142, 60865.84910208294, 144707.1154351916 ], ((1.25, 0.0), (41.4144, 336.011))), (((Fraction(5, 4), Fraction(1, 1)), (334.34344019665406, 396.1666489172391)), [ 4816.457423065935, 16324.82895624065, 51043.67450160326, 151094.0866783297, 430617.2857956476, 1194290.5953048149 ], ((1.25, 1.0), (334.343, 396.167))), (((Fraction(4, 3), 0), (646.7639733950962, 836.1733802023176)), [ 5956.133986838953, 14025.538056632176, 34359.162151911856, 85596.68418849679, 214707.14930518836, 540045.1348296632 ], ((1.33333, 0.0), (646.764, 836.173))), (((Fraction(4, 3), Fraction(1, 1)), (961.3235324936308, 976.4308028867101)), [ 13361.221801905767, 47830.002071055715, 158430.21598980148, 496957.254308979, 1500759.03676648, 4410090.312337113 ], ((1.33333, 1.0), (961.324, 976.431))), (((Fraction(3, 2), 0), (993.5060588040174, 789.8477910359313)), [ 7312.288387091468, 18865.72139149913, 51543.76468510362, 143971.22872036492, 405395.57506920083, 1144815.2873512912 ], ((1.5, 0.0), (993.506, 789.848))), (((Fraction(3, 2), Fraction(1, 1)), (306.3138276450713, 176.2989470011036)), [ 3127.096979662729, 12273.883197935773, 45438.844259927595, 159873.90543152104, 541896.6790150353, 1787463.339791056 ], ((1.5, 1.0), (306.314, 176.299))), (((Fraction(3, 2), Fraction(2, 1)), (623.7521800036756, 545.819243769916)), [ 18089.967980640988, 111778.0688886881, 559542.6578003977, 2470719.679039657, 10061164.053347098, 38731727.88533937 ], ((1.5, 2.0), (623.752, 545.819))), (((Fraction(5, 3), 0), (674.515344060474, 93.52470814254)), [ 1617.1853318529588, 3667.3060046217547, 10176.033429851634, 30839.954953419994, 96443.81648202146, 304723.0940893776 ], ((1.66667, 0.0), (674.515, 93.5247))), (((Fraction(7, 4), 0), (192.79185213528302, 921.0172026961501)), [ 10612.912005989885, 35241.758587692566, 118082.9937972425, 396726.5846888438, 1333968.1715455244, 4486460.534003467 ], ((1.75, 0.0), (192.792, 921.017))), (((Fraction(2, 1), 0), (601.3899361738712, 695.3677746959734)), [ 11727.274331309445, 45104.92751671617, 178615.54025834304, 712657.9912248506, 2848827.7950908807, 11393507.010555001 ], ((2.0, 0.0), (601.39, 695.368))), (((Fraction(2, 1), Fraction(1, 1)), (95.64610607936808, 399.1728717576563)), [ 12869.17800232437, 76736.83748354937, 408848.66678591946, 2043860.7495052798, 9810168.14242224, 45780433.96224817 ], ((2.0, 1.0), (95.6461, 399.173))), (((Fraction(2, 1), Fraction(2, 1)), (910.0933475245264, 649.3303470713025)), [ 42467.23556008789, 374924.3732605948, 2660567.19495158, 16623766.97837287, 95748565.7510935, 521293702.00774235 ], ((2.0, 2.0), (910.093, 649.33))), (((Fraction(9, 4), 0), (991.6538373014305, 196.89404893784854)), [ 5446.857587036748, 22184.29382918959, 101801.40689347989, 480526.35622160026, 2282055.9737017835, 10851623.32968404 ], ((2.25, 0.0), (991.654, 196.894))), (((Fraction(7, 3), 0), (454.80058623925424, 800.545149328823)), [ 20787.379981321064, 102924.57970032863, 516870.1273219162, 2603024.963156712, 13116586.527189683, 66101616.62275291 ], ((2.33333, 0.0), (454.801, 800.545))), (((Fraction(5, 2), 0), (444.6771885244102, 788.914623707213)), [ 25689.945147155224, 143253.478519879, 808293.2518647105, 4570326.31979187, 25851599.066826478, 146236657.2404956 ], ((2.5, 0.0), (444.677, 788.915))), (((Fraction(5, 2), Fraction(1, 1)), (561.6799261002398, 118.03818227888634)), [ 8116.123591948965, 64663.26005666098, 484046.0745404187, 3419312.620222673, 23207812.621413387, 153160603.80521256 ], ((2.5, 1.0), (561.68, 118.038))), (((Fraction(5, 2), Fraction(2, 1)), (98.86684880610103, 982.9958000733947)), [ 125922.32925820061, 1601570.0898857696, 16105502.055251304, 142353096.47013444, 1159589128.4318285, 8928380108.544924 ], ((2.5, 2.0), (0.0, 982.996))), (((Fraction(8, 3), 0), (119.32012560773262, 194.108049319692)), [ 7945.26627894892, 49810.980751448864, 315641.6975316356, 2003561.5353809511, 12721184.440340932, 80773847.93606871 ], ((2.66667, 0.0), (119.32, 194.108))), (((Fraction(11, 4), 0), (335.21389505653997, 713.4600389668701)), [ 32622.72952123845, 217538.8630750938, 1461501.3736992066, 9829850.300849823, 66125167.21631561, 444833408.7346114 ], ((2.75, 0.0), (335.214, 713.46))), (((Fraction(3, 1), 0), (854.0891091206599, 475.68703018220896)), [ 31298.059040782035, 244405.84856241164, 1949268.1647354485, 15588166.694119744, 124699354.92919411, 997588860.809789 ], ((3.0, 0.0), (854.089, 475.687))), (((Fraction(3, 1), Fraction(1, 1)), (498.14812816021515, 788.4374477528575)), [ 101418.14144052597, 1211538.0678765494, 12918257.292110976, 129178089.58795632, 1240105375.9704788, 11574312691.156733 ], ((3.0, 1.0), (498.148, 788.437))), ] modeler = SingleParameterModeler() modeler.use_crossvalidation = False for orig, values, (exponents, coeff) in data: if exponents: term = CompoundTerm.create(*exponents) term.coefficient = coeff[1] function = SingleParameterFunction(term) else: function = SingleParameterFunction() function.constant_coefficient = coeff[0] measurements = [ Measurement(Coordinate(p), None, None, v) for p, v in zip(points, values) ] models = modeler.model([measurements]) self.assertEqual(1, len(models)) self.assertApproxFunction(function, models[0].hypothesis.function, places=3)
def read_text_file(path, progress_bar=DUMMY_PROGRESS): # read text file into list with open(path) as file: lines = file.readlines() # remove empty lines lines_no_space = [l for l in lines if not l.isspace()] # remove line breaks lines_no_space = [l.replace("\n", "") for l in lines_no_space] # create an experiment object to save the date loaded from the text file experiment = Experiment() # variables for parsing number_parameters = 0 last_metric = None last_callpath = Callpath("") coordinate_id = 0 if len(lines_no_space) == 0: raise FileFormatError(f'File contains no data: "{path}"') # parse text to extrap objects for i, line in enumerate(progress_bar(lines)): if line.isspace() or line.startswith('#'): continue # allow comments line = re_whitespace.sub(' ', line) # get field name field_separator_idx = line.find(" ") field_name = line[:field_separator_idx] field_value = line[field_separator_idx + 1:].strip() if field_name == "METRIC": # create a new metric if not already exists metric_name = field_value test_metric = Metric(metric_name) if test_metric not in experiment.metrics: metric = test_metric experiment.add_metric(metric) last_metric = metric else: last_metric = metric # reset the coordinate id, since moving to a new region coordinate_id = 0 elif field_name == "REGION": # create a new region if not already exists callpath_name = field_value callpath = Callpath(callpath_name) experiment.add_callpath(callpath) last_callpath = callpath # reset the coordinate id, since moving to a new region coordinate_id = 0 elif field_name == "DATA": if last_metric is None: last_metric = Metric("") # create a new data set data_string = field_value data_list = data_string.split(" ") values = [float(d) for d in data_list] if 1 <= number_parameters <= 4: # create one measurement per repetition if coordinate_id >= len(experiment.coordinates): raise FileFormatError( f'To many DATA lines ({coordinate_id}) for the number of POINTS ' f'({len(experiment.coordinates)}) in line {i}.') measurement = Measurement( experiment.coordinates[coordinate_id], last_callpath, last_metric, values) experiment.add_measurement(measurement) coordinate_id += 1 elif number_parameters >= 5: raise FileFormatError( "This input format supports a maximum of 4 parameters.") else: raise FileFormatError("This file has no parameters.") elif field_name == "PARAMETER": # create a new parameter parameters = field_value.split(' ') experiment.parameters += [Parameter(p) for p in parameters] number_parameters = len(experiment.parameters) elif field_name == "POINTS": coordinate_string = field_value.strip() if '(' in coordinate_string: coordinate_string = coordinate_string.replace(") (", ")(") coordinate_string = coordinate_string[1:-1] coordinate_strings = coordinate_string.split(')(') else: coordinate_strings = coordinate_string.split(' ') # create a new point if number_parameters == 1: coordinates = [ Coordinate(float(c)) for c in coordinate_strings ] experiment.coordinates.extend(coordinates) elif 1 < number_parameters < 5: for coordinate_string in coordinate_strings: coordinate_string = coordinate_string.strip() values = coordinate_string.split(" ") coordinate = Coordinate(float(v) for v in values) experiment.coordinates.append(coordinate) elif number_parameters >= 5: raise FileFormatError( "This input format supports a maximum of 4 parameters.") else: raise FileFormatError("This file has no parameters.") else: raise FileFormatError( f'Encountered wrong field: "{field_name}" in line {i}: {line}') if last_metric == Metric(''): experiment.metrics.append(last_metric) if last_metric == Callpath(''): experiment.callpaths.append(last_callpath) # create the call tree and add it to the experiment call_tree = create_call_tree(experiment.callpaths, progress_bar, progress_scale=10) experiment.call_tree = call_tree io_helper.validate_experiment(experiment, progress_bar) return experiment
def _read_legacy_json_file(experiment, json_data, progress_bar): # read parameters parameter_data = json_data["parameters"] parameter_data = sorted(parameter_data, key=lambda x: x["id"]) logging.debug("Number of parameters: " + str(len(parameter_data))) for i, p_data in enumerate(progress_bar(parameter_data)): parameter_name = p_data["name"] parameter = Parameter(parameter_name) experiment.add_parameter(parameter) logging.debug("Parameter " + str(i + 1) + ": " + parameter_name) # read callpaths callpath_data = json_data["callpaths"] callpath_data = sorted(callpath_data, key=lambda x: x["id"]) logging.debug("Number of callpaths: " + str(len(callpath_data))) for i, c_data in enumerate(progress_bar(callpath_data)): callpath_name = c_data["name"] callpath = Callpath(callpath_name) experiment.add_callpath(callpath) logging.debug("Callpath " + str(i + 1) + ": " + callpath_name) # read metrics metric_data = json_data["metrics"] metric_data = sorted(metric_data, key=lambda x: x["id"]) logging.debug("Number of metrics: " + str(len(metric_data))) for i, m_data in enumerate(progress_bar(metric_data)): metric_name = m_data["name"] metric = Metric(metric_name) experiment.add_metric(metric) logging.debug("Metric " + str(i + 1) + ": " + metric_name) # read coordinates coordinate_data = json_data["coordinates"] coordinate_data = sorted(coordinate_data, key=lambda x: x["id"]) logging.debug("Number of coordinates: " + str(len(coordinate_data))) for i, c_data in enumerate(progress_bar(coordinate_data)): parameter_value_pairs = c_data["parameter_value_pairs"] parameter_value_pairs = sorted(parameter_value_pairs, key=lambda x: x["parameter_id"]) coordinate = Coordinate( float(p["parameter_value"]) for p in parameter_value_pairs) experiment.add_coordinate(coordinate) logging.debug(f"Coordinate {i + 1}: {coordinate}") aggregate_data = {} # read measurements measurements_data = json_data["measurements"] logging.debug("Number of measurements: " + str(len(measurements_data))) for i, m_data in enumerate(progress_bar(measurements_data)): coordinate_id = int(m_data["coordinate_id"]) - 1 callpath_id = int(m_data["callpath_id"]) - 1 metric_id = int(m_data["metric_id"]) - 1 value = float(m_data["value"]) key = coordinate_id, callpath_id, metric_id if key in aggregate_data: aggregate_data[key].append(value) else: aggregate_data[key] = [value] for key in progress_bar(aggregate_data): coordinate_id, callpath_id, metric_id = key coordinate = experiment.coordinates[coordinate_id] callpath = experiment.callpaths[callpath_id] metric = experiment.metrics[metric_id] values = aggregate_data[key] measurement = Measurement(coordinate, callpath, metric, values) experiment.add_measurement(measurement)