Esempio n. 1
0
    def test_modeling_4p(self):
        exponents = [(0, 1, 1), (0, 1, 2), (1, 4, 0), (1, 3, 0), (1, 4, 1),
                     (1, 3, 1), (1, 4, 2), (1, 3, 2), (1, 2, 0), (1, 2, 1),
                     (1, 2, 2), (2, 3, 0), (3, 4, 0), (2, 3, 1), (3, 4, 1),
                     (4, 5, 0), (2, 3, 2), (3, 4, 2), (1, 1, 0), (1, 1, 1),
                     (1, 1, 2), (5, 4, 0), (5, 4, 1), (4, 3, 0), (4, 3, 1),
                     (3, 2, 0), (3, 2, 1), (3, 2, 2), (5, 3, 0), (7, 4, 0),
                     (2, 1, 0), (2, 1, 1), (2, 1, 2), (9, 4, 0), (7, 3, 0),
                     (5, 2, 0), (5, 2, 1), (5, 2, 2), (8, 3, 0), (11, 4, 0),
                     (3, 1, 0), (3, 1, 1)]
        points = np.array(
            list(zip(*itertools.product([2, 4, 8, 10, 12], repeat=4))))
        for expo1, expo2, expo3, expo4 in zip(exponents, exponents[1:],
                                              exponents[2:], exponents[3:]):
            termX = CompoundTerm.create(*expo1)
            termY = CompoundTerm.create(*expo2)
            termZ = CompoundTerm.create(*expo3)
            termW = CompoundTerm.create(*expo4)
            term = MultiParameterTerm((0, termX), (1, termY), (2, termZ),
                                      (3, termW))
            term.coefficient = 10
            function = MultiParameterFunction(term)
            function.constant_coefficient = 20000

            values = function.evaluate(points)
            measurements = [
                Measurement(Coordinate(p), None, None, v)
                for p, v in zip(zip(*points), values)
            ]
            modeler = MultiParameterModeler()

            models = modeler.model([measurements])
            self.assertEqual(1, len(models))
            self.assertApproxFunction(function, models[0].hypothesis.function)
def deserialize_MultiParameterTerm(id_mappings, ioHelper):
    new_term = MultiParameterTerm()
    new_term.coefficient = ioHelper.readValue()
    size = ioHelper.readInt()
    for i in range(size):
        name = ioHelper.readString()
        p = id_mappings.parameter_mapping[name]
        prefix = ioHelper.readString()
        assert (prefix == 'CompoundTerm')
        term = deserialize_CompoundTerm(ioHelper)
        new_term.add_parameter_term_pair((p, term))

    return new_term
Esempio n. 3
0
    def test_modeling_plus(self):
        exponents = [(0, 1, 1), (0, 1, 2), (1, 4, 0), (1, 3, 0), (1, 4, 1), (1, 3, 1), (1, 4, 2), (1, 3, 2),
                     (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 3, 0), (3, 4, 0), (2, 3, 1), (3, 4, 1), (4, 5, 0),
                     (2, 3, 2), (3, 4, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (5, 4, 0), (5, 4, 1), (4, 3, 0),
                     (4, 3, 1), (3, 2, 0), (3, 2, 1), (3, 2, 2), (5, 3, 0), (7, 4, 0), (2, 1, 0), (2, 1, 1),
                     (2, 1, 2), (9, 4, 0), (7, 3, 0), (5, 2, 0), (5, 2, 1), (5, 2, 2), (8, 3, 0), (11, 4, 0),
                     (3, 1, 0), (3, 1, 1)]
        for expo1, expo2 in zip(exponents, exponents[1:]):
            termX = CompoundTerm.create(*expo1)
            termY = CompoundTerm.create(*expo2)
            term1 = MultiParameterTerm((0, termX))
            term1.coefficient = 10
            term2 = MultiParameterTerm((1, termY))
            term2.coefficient = 20
            function = MultiParameterFunction(term1, term2)
            function.constant_coefficient = 200
            points = [np.array([2, 4, 8, 16, 32, 2, 4, 8, 16, 32, 2, 4, 8, 16, 32, 2, 4, 8, 16, 32, 2, 4, 8, 16, 32]),
                      np.array([2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32])]

            values = function.evaluate(np.array(points))
            measurements = [Measurement(Coordinate(p), None, None, v) for p, v in zip(zip(*points), values)]
            modeler = MultiParameterModeler()

            models = modeler.model([measurements])
            self.assertEqual(1, len(models))
            self.assertApproxFunction(function, models[0].hypothesis.function)
Esempio n. 4
0
    def create_model(self, measurements: Sequence[Measurement]):
        """
        Create a multi-parameter model using the given measurements.
        """
        if self.single_parameter_point_selection == 'auto' \
                or self.single_parameter_point_selection == 'all':
            measurements_sp = self.find_best_measurement_points(measurements)
        else:
            # use the first base points found for each parameter for modeling of the single parameter functions
            measurements_sp = self.find_first_measurement_points(measurements)
        # print(coordinates_list)

        # model all single parameter experiments using only the selected points from the step before
        # parameters = list(range(measurements[0].coordinate.dimensions))

        models = self.single_parameter_modeler.model(measurements_sp)
        functions = [m.hypothesis.function for m in models]

        # check if the number of measurements satisfies the reuqirements of the modeler (>=5)
        if len(measurements) < self.min_measurement_points:
            warnings.warn("Number of measurements for each parameter needs to be at least 5"
                          " in order to create a performance model.")
            # return None

        # get the coordinates for modeling
        # coordinates = list(dict.fromkeys(m.coordinate for m in measurements).keys())

        # use all available additional points for modeling the multi-parameter models
        constantCost = 0
        meanModel = 0

        for m in measurements:
            meanModel += m.value(self.use_median) / float(len(measurements))
        for m in measurements:
            constantCost += (m.value(self.use_median) - meanModel) * (m.value(self.use_median) - meanModel)

        # find out which parameters should be kept
        compound_term_pairs = []

        for i, function in enumerate(functions):
            terms = function.compound_terms
            if len(terms) > 0:
                compound_term = terms[0]
                compound_term.coefficient = 1
                compound_term_pairs.append((i, compound_term))

        # see if the function is constant
        if len(compound_term_pairs) == 0:
            constant_function = ConstantFunction()
            constant_function.constant_coefficient = meanModel
            constant_hypothesis = ConstantHypothesis(constant_function, self.use_median)
            constant_hypothesis.compute_cost(measurements)
            return Model(constant_hypothesis)

        # in case is only one parameter, make a single parameter function
        elif len(compound_term_pairs) == 1:
            param, compound_term = compound_term_pairs[0]
            multi_parameter_function = MultiParameterFunction()
            multi_parameter_term = MultiParameterTerm(compound_term_pairs[0])
            multi_parameter_term.coefficient = compound_term.coefficient
            multi_parameter_function.add_compound_term(multi_parameter_term)
            # constant_coefficient = functions[param].get_constant_coefficient()
            # multi_parameter_function.set_constant_coefficient(constant_coefficient)
            multi_parameter_hypothesis = MultiParameterHypothesis(multi_parameter_function, self.use_median)
            multi_parameter_hypothesis.compute_coefficients(measurements)
            multi_parameter_hypothesis.compute_cost(measurements)
            return Model(multi_parameter_hypothesis)

        # create multiplicative multi parameter term
        mult = MultiParameterTerm(*compound_term_pairs)

        # create additive multi parameter terms
        add = [MultiParameterTerm(ctp) for ctp in compound_term_pairs]

        # create multi parameter functions
        mp_functions = [
            # create f1 function a*b
            MultiParameterFunction(mult),
            # create f4 function a+b
            MultiParameterFunction(*add)
        ]

        if not self.allow_combinations_of_sums_and_products:
            pass
        # add Hypotheses for 2 parameter models
        elif len(compound_term_pairs) == 2:
            mp_functions += [
                # create f2 function a*b+a
                MultiParameterFunction(add[0], mult),
                # create f3 function a*b+b
                MultiParameterFunction(add[1], mult)
            ]
        # add Hypotheses for 3 parameter models
        elif len(compound_term_pairs) == 3:
            # create multiplicative multi parameter terms
            # x*y
            mult_x_y = MultiParameterTerm(compound_term_pairs[0], compound_term_pairs[1])
            # y*z
            mult_y_z = MultiParameterTerm(compound_term_pairs[1], compound_term_pairs[2])
            # x*z
            mult_x_z = MultiParameterTerm(compound_term_pairs[0], compound_term_pairs[2])

            # create multi parameter functions
            mp_functions += [
                # x*y*z+x
                MultiParameterFunction(mult, add[0]),
                # x*y*z+y
                MultiParameterFunction(mult, add[1]),
                # x*y*z+z
                MultiParameterFunction(mult, add[2]),

                # x*y*z+x*y
                MultiParameterFunction(mult, mult_x_y),
                # x*y*z+y*z
                MultiParameterFunction(mult, mult_y_z),
                # x*y*z+x*z
                MultiParameterFunction(mult, mult_x_z),

                # x*y*z+x*y+z
                MultiParameterFunction(mult, mult_x_y, add[2]),
                # x*y*z+y*z+x
                MultiParameterFunction(mult, mult_y_z, add[0]),
                # x*y*z+x*z+y
                MultiParameterFunction(mult, mult_x_z, add[1]),

                # x*y*z+x+y
                MultiParameterFunction(mult, add[0], add[1]),
                # x*y*z+x+z
                MultiParameterFunction(mult, add[0], add[2]),
                # x*y*z+y+z
                MultiParameterFunction(mult, add[1], add[2]),

                # x*y+z
                MultiParameterFunction(mult_x_y, add[2]),
                # x*y+z+y
                MultiParameterFunction(mult_x_y, add[2], add[1]),
                # x*y+z+x
                MultiParameterFunction(mult_x_y, add[2], add[0]),

                # x*z+y
                MultiParameterFunction(mult_x_z, add[1]),
                # x*z+y+x
                MultiParameterFunction(mult_x_z, add[1], add[0]),
                # x*z+y+z
                MultiParameterFunction(mult_x_z, add[1], add[2]),

                # y*z+x
                MultiParameterFunction(mult_y_z, add[0]),
                # y*z+x+y
                MultiParameterFunction(mult_y_z, add[0], add[1]),
                # y*z+x+z
                MultiParameterFunction(mult_y_z, add[0], add[2])
            ]

        # create the hypotheses from the functions
        hypotheses = [MultiParameterHypothesis(f, self.use_median)
                      for f in mp_functions]

        # select one function as the bestHypothesis for the start
        best_hypothesis = copy.deepcopy(hypotheses[0])
        best_hypothesis.compute_coefficients(measurements)
        best_hypothesis.compute_cost(measurements)
        best_hypothesis.compute_adjusted_rsquared(constantCost, measurements)

        logging.info(f"hypothesis 0: {best_hypothesis.function} --- smape: {best_hypothesis.SMAPE} "
                     f"--- ar2: {best_hypothesis.AR2} --- rss: {best_hypothesis.RSS} "
                     f"--- rrss: {best_hypothesis.rRSS} --- re: {best_hypothesis.RE}")

        # find the best hypothesis
        for i, hypothesis in enumerate(hypotheses):
            hypothesis.compute_coefficients(measurements)
            hypothesis.compute_cost(measurements)
            hypothesis.compute_adjusted_rsquared(constantCost, measurements)

            logging.info(f"hypothesis {i}: {hypothesis.function} --- smape: {hypothesis.SMAPE} "
                         f"--- ar2: {hypothesis.AR2} --- rss: {hypothesis.RSS} "
                         f"--- rrss: {hypothesis.rRSS} --- re: {hypothesis.RE}")

            term_contribution_big_enough = True
            # for all compound terms check if they are smaller than minimum allowed contribution
            for term in hypothesis.function.compound_terms:
                # ignore this hypothesis, since one of the terms contributes less than epsilon to the function
                if term.coefficient == 0 or hypothesis.calc_term_contribution(term, measurements) < self.epsilon:
                    term_contribution_big_enough = False
                    break

            if not term_contribution_big_enough:
                continue
            elif self.compare_with_RSS:
                if hypotheses[i].RSS < best_hypothesis.RSS:
                    best_hypothesis = copy.deepcopy(hypotheses[i])
            elif hypotheses[i].SMAPE < best_hypothesis.SMAPE:
                best_hypothesis = copy.deepcopy(hypotheses[i])

        # add the best found hypothesis to the model list
        model = Model(best_hypothesis)

        logging.info(f"best hypothesis: {best_hypothesis.function} --- smape: {best_hypothesis.SMAPE} "
                     f"--- ar2: {best_hypothesis.AR2} --- rss: {best_hypothesis.RSS} "
                     f"--- rrss: {best_hypothesis.rRSS} --- re: {best_hypothesis.RE}")

        return model