def execute(self, arguments):
        """Task code.

        :param arguments: dictionary with task arguments
        :return: {}, results
        """
        self._strict_assert(arguments.get('name'))
        self._strict_assert(arguments.get('ecosystem'))

        # get rid of version if scheduled from the core analyses
        arguments.pop('version', None)
        arguments.pop('document_id', None)

        db = self.storage.session
        try:
            ecosystem = Ecosystem.by_name(db, arguments['ecosystem'])
        except NoResultFound:
            raise FatalTaskError('Unknown ecosystem: %r' %
                                 arguments['ecosystem'])
        package = Package.get_or_create(db,
                                        ecosystem_id=ecosystem.id,
                                        name=arguments['name'])
        url = self.get_upstream_url(arguments)
        upstream = self.get_upstream_entry(package, url)
        if upstream is None:
            upstream = self.add_or_update_upstream(package, url)
        arguments['url'] = upstream.url

        if not arguments.get('force'):
            # can potentially schedule two flows of a same type at the same
            # time as there is no lock, but let's say it's OK
            if upstream.updated_at is not None \
                    and datetime.datetime.utcnow() - upstream.updated_at < self._UPDATE_INTERVAL:
                self.log.info(
                    'Skipping upstream package check as data are considered as recent - '
                    'last update %s.', upstream.updated_at)
                # keep track of start, but do not schedule nothing more
                # discard changes like updates
                db.rollback()
                return arguments

        # if this fails, it's actually OK, as there could be concurrency
        package_analysis = PackageAnalysis(
            package_id=package.id,
            started_at=datetime.datetime.utcnow(),
            finished_at=None)
        db.add(package_analysis)

        # keep track of updates
        upstream.updated_at = datetime.datetime.utcnow()

        db.commit()
        arguments['document_id'] = package_analysis.id
        return arguments
    def execute(self, arguments):
        self._strict_assert(arguments.get('name'))
        self._strict_assert(arguments.get('ecosystem'))

        # get rid of version if scheduled from the core analyses
        arguments.pop('version', None)

        db = self.storage.session
        ecosystem = Ecosystem.by_name(db, arguments['ecosystem'])
        package = Package.get_or_create(db,
                                        ecosystem_id=ecosystem.id,
                                        name=arguments['name'])
        upstream = self.get_upstream_entry(db, package,
                                           self.get_upstream_url(arguments))
        arguments['url'] = upstream.url

        if not arguments.get('force'):
            # can potentially schedule two flows of a same type at the same
            # time as there is no lock, but let's say it's OK
            if upstream.updated_at is not None \
                    and upstream.updated_at - datetime.datetime.now() < self._UPDATE_INTERVAL:
                self.log.info(
                    'Skipping upstream package check as data are considered as recent - '
                    'last update %s.', upstream.updated_at)
                # keep track of start, but do not schedule nothing more
                # discard changes like updates
                db.rollback()
                return arguments

        # if this fails, it's actually OK, as there could be concurrency
        package_analysis = PackageAnalysis(package_id=package.id,
                                           started_at=datetime.datetime.now(),
                                           finished_at=None)
        db.add(package_analysis)

        # keep track of updates
        upstream.updated_at = datetime.datetime.now()

        db.commit()
        arguments['document_id'] = package_analysis.id
        return arguments
Esempio n. 3
0
    def execute(self, arguments):
        """Task code.

        :param arguments: dictionary with task arguments
        :return: {}, results
        """
        self.log.debug("Input Arguments: {}".format(arguments))
        self._strict_assert(arguments.get('name'))
        self._strict_assert(arguments.get('version'))
        self._strict_assert(arguments.get('ecosystem'))

        # make sure we store package name based on ecosystem package naming case sensitivity
        arguments['name'] = normalize_package_name(arguments['ecosystem'], arguments['name'])

        db = self.storage.session
        try:
            ecosystem = Ecosystem.by_name(db, arguments['ecosystem'])
        except NoResultFound:
            raise FatalTaskError('Unknown ecosystem: %r' % arguments['ecosystem'])

        p = Package.get_or_create(db, ecosystem_id=ecosystem.id, name=arguments['name'])
        v = Version.get_or_create(db, package_id=p.id, identifier=arguments['version'])

        if not arguments.get('force'):
            # TODO: this is OK for now, but if we will scale and there will be
            # 2+ workers running this task they can potentially schedule two
            # flows of a same type at the same time
            if db.query(Analysis).filter(Analysis.version_id == v.id).count() > 0:
                # we need to propagate flags that were passed to flow, but not
                # E/P/V - this way we are sure that for example graph import is
                # scheduled (arguments['force_graph_sync'] == True)
                arguments.pop('name')
                arguments.pop('version')
                arguments.pop('ecosystem')
                self.log.debug("Arguments returned by initAnalysisFlow without force: {}"
                               .format(arguments))
                return arguments

        cache_path = mkdtemp(dir=self.configuration.WORKER_DATA_DIR)
        epv_cache = ObjectCache.get_from_dict(arguments)

        try:
            if not epv_cache.\
                    has_source_tarball():
                _, source_tarball_path = IndianaJones.fetch_artifact(
                    ecosystem=ecosystem,
                    artifact=arguments['name'],
                    version=arguments['version'],
                    target_dir=cache_path
                )
                epv_cache.put_source_tarball(source_tarball_path)

            if ecosystem.is_backed_by(EcosystemBackend.maven):
                if not epv_cache.has_source_jar():
                    try:
                        source_jar_path = self._download_source_jar(cache_path, ecosystem,
                                                                    arguments)
                        epv_cache.put_source_jar(source_jar_path)
                    except Exception as e:
                        self.log.info(
                            'Failed to fetch source jar for maven artifact "{n}/{v}": {err}'.
                            format(n=arguments.get('name'),
                                   v=arguments.get('version'),
                                   err=str(e))
                        )

                if not epv_cache.has_pom_xml():
                    pom_xml_path = self._download_pom_xml(cache_path, ecosystem, arguments)
                    epv_cache.put_pom_xml(pom_xml_path)
        finally:
            # always clean up cache
            shutil.rmtree(cache_path)

        a = Analysis(version=v, access_count=1, started_at=datetime.datetime.utcnow())
        db.add(a)
        db.commit()

        arguments['document_id'] = a.id

        # export ecosystem backend so we can use it to easily control flow later
        arguments['ecosystem_backend'] = ecosystem.backend.name

        self.log.debug("Arguments returned by InitAnalysisFlow are: {}".format(arguments))
        return arguments
    def execute(self, arguments):
        """Task code.

        :param arguments: dictionary with task arguments
        :return: {}, results
        """
        self.log.debug("Input Arguments: {}".format(arguments))
        self._strict_assert(isinstance(arguments.get('ecosystem'), str))
        self._strict_assert(isinstance(arguments.get('name'), str))
        self._strict_assert(isinstance(arguments.get('version'), str))

        db = self.storage.session
        try:
            ecosystem = Ecosystem.by_name(db, arguments['ecosystem'])
        except NoResultFound:
            raise FatalTaskError('Unknown ecosystem: %r' %
                                 arguments['ecosystem'])

        # make sure we store package name in its normalized form
        arguments['name'] = normalize_package_name(ecosystem.backend.name,
                                                   arguments['name'])

        if len(pattern_ignore.findall(arguments['version'])) > 0:
            self.log.info("Incorrect version alert {} {}".format(
                arguments['name'], arguments['version']))
            raise NotABugFatalTaskError("Incorrect version alert {} {}".format(
                arguments['name'], arguments['version']))

        # Dont try ingestion for private packages
        if is_pkg_public(arguments['ecosystem'], arguments['name']):
            self.log.info("Ingestion flow for {} {}".format(
                arguments['ecosystem'], arguments['name']))
        else:
            self.log.info("Private package ingestion ignored {} {}".format(
                arguments['ecosystem'], arguments['name']))
            raise NotABugFatalTaskError("Private package alert {} {}".format(
                arguments['ecosystem'], arguments['name']))

        p = Package.get_or_create(db,
                                  ecosystem_id=ecosystem.id,
                                  name=arguments['name'])
        v = Version.get_or_create(db,
                                  package_id=p.id,
                                  identifier=arguments['version'])

        if not arguments.get('force'):
            if db.query(Analysis).filter(
                    Analysis.version_id == v.id).count() > 0:
                arguments['analysis_already_exists'] = True
                self.log.debug(
                    "Arguments returned by initAnalysisFlow without force: {}".
                    format(arguments))
                return arguments

        cache_path = mkdtemp(dir=self.configuration.WORKER_DATA_DIR)
        epv_cache = ObjectCache.get_from_dict(arguments)
        npm_dir = self.configuration.NPM_DATA_DIR

        try:
            if not epv_cache.\
                    has_source_tarball():
                _, source_tarball_path = IndianaJones.fetch_artifact(
                    ecosystem=ecosystem,
                    artifact=arguments['name'],
                    version=arguments['version'],
                    target_dir=cache_path)
                epv_cache.put_source_tarball(source_tarball_path)

            if ecosystem.is_backed_by(EcosystemBackend.maven):
                if not epv_cache.has_source_jar():
                    try:
                        source_jar_path = self._download_source_jar(
                            cache_path, ecosystem, arguments)
                        epv_cache.put_source_jar(source_jar_path)
                    except Exception as e:
                        self.log.info(
                            'Failed to fetch source jar for maven artifact "{n}/{v}": {err}'
                            .format(n=arguments.get('name'),
                                    v=arguments.get('version'),
                                    err=str(e)))

                if not epv_cache.has_pom_xml():
                    pom_xml_path = self._download_pom_xml(
                        cache_path, ecosystem, arguments)
                    epv_cache.put_pom_xml(pom_xml_path)
        finally:
            # always clean up cache
            shutil.rmtree(cache_path)
            if arguments['ecosystem'] == "npm":
                shutil.rmtree(npm_dir, True)

        a = Analysis(version=v,
                     access_count=1,
                     started_at=datetime.datetime.utcnow())
        db.add(a)
        db.commit()

        arguments['document_id'] = a.id

        # export ecosystem backend so we can use it to easily control flow later
        arguments['ecosystem_backend'] = ecosystem.backend.name

        self.log.debug(
            "Arguments returned by InitAnalysisFlow are: {}".format(arguments))
        return arguments