Esempio n. 1
0
def focalloss_simple(pcls, gcls, alpha=0.25, gamma=2, reduction='none'):
    '''
    基本不用 适用于 G = 1 简单化版 无需 正反忽略例 不带忽略
    :param pcls: 支持 2D or 3D
    :param gcls:
    :param alpha:
    :param gamma:
    :param reduction:
    :return:
    '''
    assert reduction in (None, 'none', 'mean', 'sum')
    eps = torch.finfo(torch.float16).eps
    # eps = 1e-6
    pcls = pcls.clamp(min=eps, max=1 - eps)

    # 正例-0.25 反例-0.75
    pt = (1 - pcls) * gcls + pcls * (1 - gcls)
    weight = (alpha * gcls + (1 - alpha) * (1 - gcls)) * pt.pow(gamma)

    loss_val = x_bce(pcls, gcls, weight)

    if reduction == 'mean':
        return loss_val.mean(-1)
    elif reduction == 'sum':
        return loss_val.sum()
    else:  # 'none'
        return loss_val
Esempio n. 2
0
def quality_focal_loss(pcls_sigmoid,
                       gcls,
                       score_iou,
                       mask_pos,
                       mash_ignore=None,
                       beta=2.0,
                       is_debug=False):
    '''
    用于连续label的 score_iou
    分离训练 -> cls分数低 iou分数高 --- 标签分类回归联合 ^^ iou
    :param pcls_sigmoid:  torch.Size([5, 3614, 3])
    :param gcls: 是1的标签 torch.Size([5, 3614, 3]) 用于判断正例位置
    :param score_iou:  torch.Size([5, 3614]) box的iou分数 回归分数 0~1
    :param beta:
    :return:
    '''
    eps = torch.finfo(torch.float16).eps
    pcls_sigmoid = pcls_sigmoid.clamp(min=eps, max=1 - eps)

    # 定位到具体的正例
    mask_pos4cls = gcls == 1  # 同维 torch.Size([5, 3614, 3])
    # ([5, 3614] -> [5, 3614,1] -> [5, 3614, 3]) ^^ [5, 3614, 3]
    _mask_pos = torch.logical_and(
        mask_pos.unsqueeze(-1).repeat(1, 1, gcls.shape[-1]), mask_pos4cls)
    '''-----这里和输入复写-----'''
    # 维度匹配 [5, 3614] -> [5, 3614,1] -> [5, 3614, 3]
    _score_iou = score_iou.unsqueeze(-1).repeat(1, 1, gcls.shape[-1])
    # 正反例处理
    scale_factor = torch.where(_mask_pos, torch.abs(_score_iou - pcls_sigmoid),
                               pcls_sigmoid)
    scale_factor = scale_factor.pow(beta)  # 难易加成 -> 正负不平衡
    _label = torch.where(
        _mask_pos, _score_iou,
        torch.zeros_like(pcls_sigmoid, device=pcls_sigmoid.device))
    bce = x_bce(pcls_sigmoid, _label)
    '''-----这里和输入复写完成-----'''

    if mash_ignore is None:
        loss_val = scale_factor * bce
    else:
        loss_val = scale_factor * bce * torch.logical_not(mash_ignore)

    if is_debug:
        if mash_ignore is None:
            _mask_neg = torch.logical_not(_mask_pos)
        else:
            mash_ignore = mash_ignore.unsqueeze(-1).repeat(
                1, 1, gcls.shape[-1])
            _mask_neg = torch.logical_not(
                torch.logical_or(_mask_pos, mash_ignore))
        l_pos = loss_val * _mask_pos
        l_neg = loss_val * _mask_neg
        return l_pos, l_neg

    return loss_val
Esempio n. 3
0
    def forward(self, pred, target, mask_calc=None, *args, **kwargs):
        """Calculate the GHM-C loss.

        Args:
            pred (float tensor of size [batch_num, class_num]):
                The direct prediction of classification fc layer.
            target (float tensor of size [batch_num, class_num]):
                Binary class target for each sample.
            mask_calc (float tensor of size [batch_num, class_num]):
                the value is 1 if the sample is valid and 0 if ignored.
        Returns:
            The gradient harmonized loss.
        """
        device = pred.device
        if mask_calc is None:  # 默认全部加入运算
            mask_calc = torch.ones_like(pred, dtype=torch.bool, device=device)

        # # the target should be binary class label
        # if pred.dim() != target.dim():
        #     target, mask_calc = _expand_binary_labels(
        #         target, mask_calc, pred.size(-1))
        target, mask_calc = target.float(), mask_calc.float()
        edges = self.edges
        mmt = self.momentum
        weights = torch.zeros_like(pred)

        # gradient length
        # g = torch.abs(pred.sigmoid().detach() - target)
        g = torch.abs(pred.detach() - target)

        valid = mask_calc > 0
        tot = max(valid.float().sum().item(), 1.0)
        n = 0  # n valid bins
        for i in range(self.bins):
            inds = (g >= edges[i]) & (g < edges[i + 1]) & valid
            num_in_bin = inds.sum().item()
            if num_in_bin > 0:
                if mmt > 0:
                    self.acc_sum[i] = mmt * self.acc_sum[i] + (
                        1 - mmt) * num_in_bin
                    weights[inds] = tot / self.acc_sum[i]
                else:
                    weights[inds] = tot / num_in_bin
                n += 1
        if n > 0:
            weights = weights / n

        # loss = F.binary_cross_entropy_with_logits(pred, target, weights, reduction='sum') / tot
        loss = x_bce(pred, target, weights) / tot
        return loss * self.loss_weight
Esempio n. 4
0
    def forward(self,
                pcls_sigmoid,
                gcls,
                mask_pos,
                mash_ignore=None,
                is_debug=False):
        '''

        :param pcls_sigmoid:  这个要求 3D torch.Size([5, 3614, 3])
        :param gcls:
        :param mask_pos: 这个要求 2D
        :param mash_ignore:
        :param is_debug:
        :return:
        '''
        eps = torch.finfo(torch.float16).eps
        pcls_sigmoid = pcls_sigmoid.clamp(min=eps, max=1 - eps)

        # 定位到具体的正例
        mask_pos4cls = gcls > 1  # 同维 torch.Size([5, 3614, 3])
        _mask_pos = torch.logical_and(
            mask_pos.unsqueeze(-1).repeat(1, 1, gcls.shape[-1]), mask_pos4cls)
        '''--- 这个要复写 ---'''
        weight, _label = self.get_args(_mask_pos, pcls_sigmoid, gcls)

        bce = x_bce(pcls_sigmoid, _label)

        if mash_ignore is None:
            loss_val = weight * bce
        else:
            loss_val = weight * bce * torch.logical_not(mash_ignore)

        if is_debug:
            if mash_ignore is None:
                _mask_neg = torch.logical_not(_mask_pos)
            else:
                mash_ignore = mash_ignore.unsqueeze(-1).repeat(
                    1, 1, gcls.shape[-1])
                _mask_neg = torch.logical_not(
                    torch.logical_or(_mask_pos, mash_ignore))
            l_pos = loss_val * _mask_pos
            l_neg = loss_val * _mask_neg
            return l_pos, l_neg

        if self.reduction == 'mean':
            return loss_val.mean(-1)
        elif self.reduction == 'sum':
            return loss_val.sum()
        else:  # 'none'
            return loss_val
Esempio n. 5
0
    def forward(self, outs, targets, imgs_ts=None):
        '''
        模型尺寸list[20,10,5,3]
        :param outs:   torch.Size([2, 534, 7]) in 160 输出[]
        :param targets:
            'image_id': 413,
            'size': tensor([500., 309.])
            'boxes': tensor([[0.31400, 0.31715, 0.71000, 0.60841]]),

            'labels': tensor([1.])
        :param imgs_ts:
        :return:
        '''
        cfg = self.cfg
        device = outs.device
        batch, dim_total, pdim = outs.shape

        #  1 + cfg.NUM_CLASSES + 1 + 4 + cfg.NUM_KEYPOINTS * 2
        #  back cls centerness ltrb positivesample iou area
        gdim = 1 + cfg.NUM_CLASSES + 1 + 4 + 1 + 1 + 1
        gres = torch.empty((batch, dim_total, gdim), device=device)

        for i in range(batch):
            gboxes_ltrb_b = targets[i]['boxes']
            glabels_b = targets[i]['labels']

            gres[i] = match4fcos_v2(
                gboxes_ltrb_b=gboxes_ltrb_b,
                glabels_b=glabels_b,
                gdim=gdim,
                pcos=outs,
                img_ts=imgs_ts[i],
                cfg=cfg,
            )

        s_ = 1 + cfg.NUM_CLASSES
        # outs = outs[:, :, :s_ + 1].sigmoid()
        mask_pos = gres[:, :, 0] == 0  # 背景为0 是正例
        nums_pos = torch.sum(mask_pos, dim=-1)
        nums_pos = torch.max(nums_pos, torch.ones_like(nums_pos,
                                                       device=device))

        # back cls centerness ltrb positivesample iou(这个暂时无用) area [2125, 12]
        ''' ---------------- cls损失 计算全部样本,正反例,正例为框内本例---------------- '''
        # obj_cls_loss = BCE_focal_loss()
        # 这里多一个背景一起算
        pcls_sigmoid = outs[:, :, :s_].sigmoid()
        gcls = gres[:, :, :s_]
        # l_cls = torch.mean(obj_cls_loss(pcls_sigmoid, gcls) / nums_pos)
        l_cls_pos, l_cls_neg = focalloss_fcos(pcls_sigmoid, gcls)
        l_cls_pos = torch.mean(
            torch.sum(torch.sum(l_cls_pos, -1), -1) / nums_pos)
        l_cls_neg = torch.mean(
            torch.sum(torch.sum(l_cls_neg, -1), -1) / nums_pos)
        ''' ---------------- conf损失 只计算半径正例 center_ness---------------- '''
        # 和 positive sample 算正例
        mask_pp = gres[:, :, s_ + 1 + 4] == 1
        pconf_sigmoid = outs[:, :, s_].sigmoid()  # center_ness
        gcenterness = gres[:, :, s_]  # (nn,1) # 使用centerness

        # _loss_val = x_bce(pconf_sigmoid, gcenterness, reduction="none")
        _loss_val = x_bce(pconf_sigmoid,
                          torch.ones_like(pconf_sigmoid),
                          reduction="none")  # 用半径1

        # 只算半径正例,提高准确性
        l_conf = 5. * torch.mean(
            torch.sum(_loss_val * mask_pp.float(), dim=-1) / nums_pos)
        ''' ---------------- box损失 计算框内正例---------------- '''
        # conf1 + cls3 + reg4
        poff_ltrb = outs[:, :, s_:s_ + 4]  # 这个全是特图的距离 全rule 或 exp
        # goff_ltrb = gres[:, :, s_ + 1:s_ + 1 + 4]
        g_ltrb = gres[:, :, s_ + 1:s_ + 1 + 4]

        # 这里是解析归一化图  归一化与特图计算的IOU是一致的
        pboxes_ltrb = boxes_decode4fcos(self.cfg, poff_ltrb)
        p_ltrb_pos = pboxes_ltrb[mask_pos]
        g_ltrb_pos = g_ltrb[mask_pos]
        iou = bbox_iou4one(p_ltrb_pos, g_ltrb_pos, is_giou=True)

        # 使用 iou 与 1 进行bce  debug iou.isnan().any() or iou.isinf().any()
        l_reg = 5 * torch.mean((1 - iou) * gcenterness[mask_pos])

        l_total = l_cls_pos + l_cls_neg + l_conf + l_reg

        log_dict = {}
        log_dict['l_total'] = l_total.item()
        log_dict['l_cls_pos'] = l_cls_pos.item()
        log_dict['l_cls_neg'] = l_cls_neg.item()
        log_dict['l_conf'] = l_conf.item()
        log_dict['l_reg'] = l_reg.item()
        # log_dict['l_iou_max'] = iou.max().item()

        return l_total, log_dict
Esempio n. 6
0
    def forward(self, pyolos, targets, imgs_ts=None):
        '''

        :param pyolos: torch.Size([3, 40, 13, 13]) [conf-1,class-3,box4] 5*8=40
            d19 torch.Size([2, 81, 13, 13])  9* conf +type4+ box4
        :param targets:
            target['boxes'] = target['boxes'].to(device)
            target['labels'] = target['labels'].to(device)
            target['size'] = target['size']
            target['image_id'] = int
        :param imgs_ts:
        :return:
        '''
        cfg = self.cfg
        device = pyolos.device
        batch, c, h, w = pyolos.shape
        s_ = 1 + cfg.NUM_CLASSES
        # [3, 40, 13, 13] -> [3, 8, 5, 13*13] -> [3, 169, 5, 8]
        pyolos = pyolos.view(batch, s_ + 4, cfg.NUM_ANC, - 1).permute(0, 3, 2, 1).contiguous()
        # [3, 169, 5, 8] -> [3, 169*5, 8]
        pyolos = pyolos.view(batch, -1, s_ + 4)
        preg_pos = pyolos[..., s_:s_ + 4]

        '''--------------gt匹配---------------'''
        # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
        if cfg.MODE_TRAIN == 4:
            gdim = 1 + cfg.NUM_CLASSES + 4 + 1 + 4 + 1  # torch.Size([3, 13, 13, 5, 13])
        else:
            gdim = 1 + cfg.NUM_CLASSES + 4 + 1 + 4  # torch.Size([3, 13, 13, 5, 13])

        gyolos = torch.empty((batch, h, w, cfg.NUM_ANC, gdim), device=device)

        # 匹配GT
        for i, target in enumerate(targets):  # batch遍历
            gboxes_ltrb_b = target['boxes']  # ltrb
            glabels_b = target['labels']

            # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
            if cfg.MODE_TRAIN == 4:
                gyolos[i] = fmatch4yolov2_99(
                    gboxes_ltrb_b=gboxes_ltrb_b,
                    glabels_b=glabels_b,
                    grid=h,  # 7 只有一层
                    gdim=gdim,
                    device=device,
                    cfg=cfg,
                    preg_b=preg_pos[i],
                    img_ts=imgs_ts[i],
                )
            else:
                gyolos[i] = fmatch4yolov2(
                    gboxes_ltrb_b=gboxes_ltrb_b,
                    glabels_b=glabels_b,
                    grid=h,  # 7 只有一层
                    gdim=gdim,
                    device=device,
                    cfg=cfg,
                    img_ts=imgs_ts[i],
                )

            '''可视化验证'''
            if cfg.IS_VISUAL:
                # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
                gyolo_test = gyolos[i].clone()  # torch.Size([32, 13, 13, 9])
                gyolo_test = gyolo_test.view(-1, gdim)
                gconf_one = gyolo_test[:, 0]
                # mask_pos = torch.logical_or(gconf_one == 1, gconf_one == -1)
                mask_pos_2d = gconf_one == 1

                gtxywh = gyolo_test[:, 1 + cfg.NUM_CLASSES:1 + cfg.NUM_CLASSES + 4]
                # 这里是修复是 xy
                _xy_grid = gtxywh[:, :2] + f_mershgrid(h, w, is_rowcol=False, num_repeat=cfg.NUM_ANC).to(device)
                hw_ts = torch.tensor((h, w), device=device)
                gtxywh[:, :2] = torch.true_divide(_xy_grid, hw_ts)
                gtxywh = gtxywh[mask_pos_2d]

                gtxywh[:, 2:4] = torch.exp(gtxywh[:, 2:]) / h  # 原图归一化

                from f_tools.pic.enhance.f_data_pretreatment4pil import f_recover_normalization4ts
                img_ts = f_recover_normalization4ts(imgs_ts[i])
                from torchvision.transforms import functional as transformsF
                img_pil = transformsF.to_pil_image(img_ts).convert('RGB')
                import numpy as np
                img_np = np.array(img_pil)
                f_show_od_np4plt(img_np, gboxes_ltrb=gboxes_ltrb_b.cpu()
                                 , pboxes_ltrb=xywh2ltrb(gtxywh.cpu()), is_recover_size=True,
                                 grids=(h, w))

        # torch.Size([32, 13, 13, 5, 13]) -> [32, 13*13*5, 13]
        gyolos = gyolos.view(batch, -1, gdim)
        gconf = gyolos[:, :, 0]  # 正例使用1  torch.Size([32, 910])
        mask_pos_2d = gconf > 0
        mask_neg_2d = gconf == 0  # 忽略-1 不管
        nums_pos = (mask_pos_2d.sum(-1).to(torch.float)).clamp(min=torch.finfo(torch.float16).eps)
        nums_neg = (mask_neg_2d.sum(-1).to(torch.float)).clamp(min=torch.finfo(torch.float16).eps)
        pyolos_pos = pyolos[mask_pos_2d]  # torch.Size([32, 845, 8]) -> torch.Size([40, 8])
        gyolos_pos = gyolos[mask_pos_2d]  # torch.Size([32, 845, 13]) -> torch.Size([40, 8])

        ''' ----------------cls损失---------------- '''
        pcls_sigmoid_pos = pyolos_pos[:, 1:s_].sigmoid()
        gcls_pos = gyolos_pos[:, 1:s_]
        _loss_val = x_bce(pcls_sigmoid_pos, gcls_pos, reduction="none")  # torch.Size([46, 3])
        # torch.Size([46, 3]) -> val
        l_cls = _loss_val.sum(-1).mean() * cfg.LOSS_WEIGHT[2]

        ''' ----------------conf损失 ---------------- '''
        pconf_sigmoid = pyolos[:, :, 0].sigmoid()  # 这个需要归一化 torch.Size([3, 845])

        # ------------conf-mse ------------
        # _loss_val = F.mse_loss(pconf_sigmoid, gconf, reduction="none")
        # l_conf_pos = ((_loss_val * mask_pos_2d).sum(-1) / nums_pos).mean() * 10
        # l_conf_neg = ((_loss_val * mask_neg_2d).sum(-1) / nums_neg).mean() * 30

        # ------------ focalloss   ------------
        mash_ignore_2d = torch.logical_not(torch.logical_or(mask_pos_2d, mask_neg_2d))
        l_pos, l_neg = focalloss(pconf_sigmoid, gconf, mask_pos=mask_pos_2d,
                                 mash_ignore=mash_ignore_2d, is_debug=True, alpha=0.5)
        l_conf_pos = (l_pos.sum(-1).sum(-1) / nums_pos).mean()
        l_conf_neg = (l_neg.sum(-1).sum(-1) / nums_neg).mean() * 3

        ''' ---------------- box损失 ----------------- '''
        log_dict = {}
        if cfg.MODE_TRAIN == 4:
            # ------------ iou损失   ------------
            # 解码pxywh 计算预测与 GT 的 iou 作为 gconf
            preg_pos = pyolos_pos[:, s_:s_ + 4]
            gltrb_pos_tx = gyolos_pos[:, s_ + 4 + 1:s_ + 4 + 1 + 4]
            match_anc_ids = gyolos_pos[:, s_ + 4 + 1 + 4]

            # 解码yolo2 特图尺寸
            pxy_pos_sigmoid = preg_pos[..., :2].sigmoid()

            # 这里与yolo1不一样
            match_ancs = torch.tensor(cfg.ANCS_SCALE, device=device)[match_anc_ids.long()]
            pwh_pos_scale = torch.exp(preg_pos[..., 2:4]) * match_ancs * h  # 恢复到特图
            pzxywh = torch.cat([pxy_pos_sigmoid, pwh_pos_scale], -1)

            iou_zg = bbox_iou4one_2d(xywh2ltrb(pzxywh), gltrb_pos_tx, is_giou=True)
            # iou_zg = bbox_iou4y(xywh2ltrb4ts(pzxywh), gltrb_pos_tx, GIoU=True)
            # print(iou_zg)
            l_reg = (1 - iou_zg).mean() * 2

            ''' ---------------- loss完成 ----------------- '''
            l_total = l_conf_pos + l_conf_neg + l_cls + l_reg
            log_dict['l_reg'] = l_reg.item()
        else:
            # ------------ mse+bce   ------------ 666666
            # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
            pxy_pos_sigmoid = pyolos_pos[:, s_:s_ + 2].sigmoid()  # 这个需要归一化
            pwh_pos_scale = pyolos_pos[:, s_ + 2:s_ + 4]
            weight_pos = gyolos_pos[:, s_ + 4 + 1]  # torch.Size([32, 845])
            gtxy_pos = gyolos_pos[:, s_:s_ + 2]  # [nn]
            gtwh_pos = gyolos_pos[:, s_ + 2:s_ + 4]

            _loss_val = x_bce(pxy_pos_sigmoid, gtxy_pos, reduction="none")
            l_txty = (_loss_val.sum(-1) * weight_pos).mean()
            _loss_val = F.mse_loss(pwh_pos_scale, gtwh_pos, reduction="none")
            l_twth = (_loss_val.sum(-1) * weight_pos).mean()

            ''' ---------------- loss完成 ----------------- '''
            l_total = l_conf_pos + l_conf_neg + l_cls + l_txty + l_twth
            log_dict['l_xy'] = l_txty.item()
            log_dict['l_wh'] = l_twth.item()

        log_dict['l_total'] = l_total.item()
        log_dict['l_conf_pos'] = l_conf_pos.item()
        log_dict['l_conf_neg'] = l_conf_neg.item()
        log_dict['l_cls'] = l_cls.item()

        log_dict['p_max'] = pconf_sigmoid.max().item()
        log_dict['p_min'] = pconf_sigmoid.min().item()
        log_dict['p_mean'] = pconf_sigmoid.mean().item()
        return l_total, log_dict
Esempio n. 7
0
    def forward(self, pyolos, targets, imgs_ts=None):
        '''

        :param pyolos: torch.Size([2, 45, 13, 13])
        :param targets:
        :param imgs_ts:
        :return:
        '''
        cfg = self.cfg
        device = pyolos.device
        batch, c, h, w = pyolos.shape  # torch.Size([2, 45, 13, 13])

        # [3, 40, 13, 13] -> [3, 8, 5, 13*13] -> [3, 169, 5, 8]
        pyolos = pyolos.view(batch, 1 + cfg.NUM_CLASSES + 4, cfg.NUM_ANC, - 1).permute(0, 3, 2, 1).contiguous()

        # [3, 169, 5, 8] -> [3, 169*5, 8]
        pyolos = pyolos.view(batch, h * w * cfg.NUM_ANC, -1)
        # pyolos = pyolos.view(batch, -1, s_ + 4)

        preg = pyolos[..., 1 + cfg.NUM_CLASSES:1 + cfg.NUM_CLASSES + 4]  # torch.Size([2, 169, 5, 4])
        pltrb = boxes_decode4yolo2_v2(preg, h, w, cfg)  # 输出原图归一化 用于更新conf [2, 845, 4]

        '''--------------gt匹配---------------'''
        # conf-1, cls-1, txywh-4, weight-1, gltrb-4
        if cfg.MODE_TRAIN == 99 or cfg.MODE_TRAIN == 98:
            gdim = 1 + 1 + 4 + 1 + 4

        gyolos = torch.empty((batch, h, w, cfg.NUM_ANC, gdim), device=device)

        # 匹配GT
        for i, target in enumerate(targets):  # batch遍历
            gboxes_ltrb_b = target['boxes']  # ltrb
            glabels_b = target['labels']

            # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
            if cfg.MODE_TRAIN == 99 or cfg.MODE_TRAIN == 98:
                gyolos[i] = fmatch4yolov2_99(
                    gboxes_ltrb_b=gboxes_ltrb_b,
                    glabels_b=glabels_b,
                    grid=h,  # 7 只有一层
                    gdim=gdim,
                    device=device,
                    cfg=cfg,
                    preg_b=preg[i],
                    img_ts=imgs_ts[i],
                )

            '''可视化验证'''
            if cfg.IS_VISUAL:
                # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
                gyolo_test = gyolos[i].clone()  # torch.Size([32, 13, 13, 9])
                gyolo_test = gyolo_test.view(-1, gdim)
                gconf_one = gyolo_test[:, 0]
                # mask_pos = torch.logical_or(gconf_one == 1, gconf_one == -1)
                mask_pos_2d = gconf_one == 1

                gtxywh = gyolo_test[:, 1 + cfg.NUM_CLASSES:1 + cfg.NUM_CLASSES + 4]
                # 这里是修复是 xy
                _xy_grid = gtxywh[:, :2] + f_mershgrid(h, w, is_rowcol=False, num_repeat=cfg.NUM_ANC).to(device)
                hw_ts = torch.tensor((h, w), device=device)
                gtxywh[:, :2] = torch.true_divide(_xy_grid, hw_ts)
                gtxywh = gtxywh[mask_pos_2d]

                gtxywh[:, 2:4] = torch.exp(gtxywh[:, 2:]) / h  # 原图归一化

                from f_tools.pic.enhance.f_data_pretreatment4pil import f_recover_normalization4ts
                img_ts = f_recover_normalization4ts(imgs_ts[i])
                from torchvision.transforms import functional as transformsF
                img_pil = transformsF.to_pil_image(img_ts).convert('RGB')
                import numpy as np
                img_np = np.array(img_pil)
                f_show_od_np4plt(img_np, gboxes_ltrb=gboxes_ltrb_b.cpu()
                                 , pboxes_ltrb=xywh2ltrb(gtxywh.cpu()), is_recover_size=True,
                                 grids=(h, w))

        # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
        # torch.Size([32, 13, 13, 5, 11]) -> [32, 13*13*5, 11] ->[2, 845, 11]
        gyolos = gyolos.view(batch, -1, gdim)
        gconf = gyolos[:, :, 0]  # 正例使用1  torch.Size([32, 910])
        # mask_pos_3d = gyolos[:, :, :1] > 0
        # mask_neg_3d = gyolos[:, :, :1] == 0

        mask_pos_2d = gconf > 0
        mask_neg_2d = gconf == 0  # 忽略-1 不管
        nums_pos = (mask_pos_2d.sum(-1).to(torch.float)).clamp(min=torch.finfo(torch.float16).eps)
        nums_neg = (mask_neg_2d.sum(-1).to(torch.float)).clamp(min=torch.finfo(torch.float16).eps)
        pyolos_pos = pyolos[mask_pos_2d]  # torch.Size([32, 845, 8]) -> torch.Size([40, 8])
        gyolos_pos = gyolos[mask_pos_2d]  # torch.Size([32, 845, 13]) -> torch.Size([40, 8])

        # [2, 845, 4] ->
        # iou_zg = bbox_iou4one(pltrb, gyolos[..., 1 + 1 + 4 + 1:1 + 1 + 4 + 1 + 4], is_giou=True)
        iou_zg = bbox_iou4one(pltrb, gyolos[..., 1 + 1 + 4 + 1:1 + 1 + 4 + 1 + 4], is_ciou=True)

        ''' ----------------cls损失---------------- '''
        # pcls_sigmoid_pos = pyolos_pos[:, 1:1 + cfg.NUM_CLASSES].sigmoid()
        pcls_pos = pyolos_pos[:, 1:1 + cfg.NUM_CLASSES]
        gcls_pos = gyolos_pos[:, 1].long()
        # torch.Size([3, 4]) ^^ tensor([2., 2., 3.])
        _loss_val = F.cross_entropy(pcls_pos, gcls_pos, reduction="none")
        # _loss_val = x_bce(pcls_sigmoid_pos, gcls_pos, reduction="none")  # torch.Size([46, 3])
        # torch.Size([46, 3]) -> val
        l_cls = _loss_val.sum(-1).mean()

        ''' ----------------conf损失 ---------------- '''
        pconf_sigmoid = pyolos[:, :, 0].sigmoid()  # 这个需要归一化 torch.Size([3, 845])
        # ------------conf-mse ------------
        _loss_val = F.mse_loss(pconf_sigmoid, iou_zg, reduction="none")  # 这理用的IOU
        l_conf_pos = ((_loss_val * mask_pos_2d).sum(-1) / nums_pos).mean() * 5.
        l_conf_neg = ((_loss_val * mask_neg_2d).sum(-1) / nums_neg).mean() * 1.

        ''' ---------------- box损失 ----------------- '''
        pxy_pos_sigmoid = pyolos_pos[:, 1 + cfg.NUM_CLASSES:1 + cfg.NUM_CLASSES + 2].sigmoid()  # 这个需要归一化
        pwh_pos_scale = pyolos_pos[:, 1 + cfg.NUM_CLASSES + 2:1 + cfg.NUM_CLASSES + 4]
        weight_pos = gyolos_pos[:, 1 + 1 + 4 + 1]  # torch.Size([32, 845])
        gtxy_pos = gyolos_pos[:, 1 + 1:1 + 1 + 2]  # [nn]
        gtwh_pos = gyolos_pos[:, 1 + 1 + 2:1 + 1 + 4]

        _loss_val = x_bce(pxy_pos_sigmoid, gtxy_pos, reduction="none")
        l_txty = (_loss_val.sum(-1) * weight_pos).mean()
        _loss_val = F.mse_loss(pwh_pos_scale, gtwh_pos, reduction="none")
        l_twth = (_loss_val.sum(-1) * weight_pos).mean()

        ''' ---------------- loss完成 ----------------- '''
        log_dict = {}
        l_total = l_conf_pos + l_conf_neg + l_cls + l_txty + l_twth
        log_dict['l_total'] = l_total.item()
        log_dict['l_xy'] = l_txty.item()
        log_dict['l_wh'] = l_twth.item()
        log_dict['l_conf_pos'] = l_conf_pos.item()
        log_dict['l_conf_neg'] = l_conf_neg.item()
        log_dict['l_cls'] = l_cls.item()

        return l_total, log_dict
Esempio n. 8
0
    def forward(self, outs, targets, imgs_ts=None):
        '''

        :param outs: tuple
            ptxywh, torch.Size([2, 32526, 4])
            pcls, torch.Size([2, 32526, 4]) 已归一化 cls+1
        :param targets:
        :param imgs_ts:
        :return:
        '''
        cfg = self.cfg
        ptxywh, pcategory_sigmoid = outs
        pcategory_sigmoid = pcategory_sigmoid.sigmoid()  # 统一归一化
        pconf_sigmoid = pcategory_sigmoid[:, :, 0]  # torch.Size([2, 32526])
        pcls_sigmoid = pcategory_sigmoid[:, :, 1:]  # 已sigmoid
        device = ptxywh.device
        batch, pdim1, c = ptxywh.shape

        # conf-1, cls-num_class, txywh-4, keypoint-nn  = 8 + nn
        gdim = 1 + cfg.NUM_CLASSES + 4
        if cfg.NUM_KEYPOINTS > 0:
            gdim += cfg.NUM_KEYPOINTS
        gretinas = torch.zeros((batch, pdim1, gdim), device=device)
        s_ = 1 + cfg.NUM_CLASSES  # 前面 两个是 conf-1, cls-3,

        for i in range(batch):
            # if cfg.IS_VISUAL:
            #     _img_ts = imgs_ts[i].clone()
            #     from f_tools.pic.enhance.f_data_pretreatment4pil import f_recover_normalization4ts
            #     _img_ts = f_recover_normalization4ts(_img_ts)
            #     f_show_od_ts4plt(_img_ts, gboxes_ltrb=boxes_ltrb_one.cpu(),
            #                      is_recover_size=True,
            #                      # grids=grids_ts.cpu().numpy(),
            #                      # plabels_text=pconf_b[index_match_dim].sigmoid(),
            #                      # glabels_text=colrow_index[None]
            #                      )

            gboxes_ltrb_b = targets[i]['boxes']
            glabels_b = targets[i]['labels']
            if cfg.NUM_KEYPOINTS > 0:
                gkeypoints_b = targets['keypoints']  # torch.Size([batch, 10])
            else:
                gkeypoints_b = None

            # 这里是一批的 mask_neg_b, mash_ignore_b 可能为None
            boxes_index, mask_pos_b, mask_neg_b, mash_ignore_b = matchs_gt_b(
                cfg,
                gboxes_ltrb_b=gboxes_ltrb_b,
                glabels_b=glabels_b,
                anc_obj=self.anc_obj,
                mode='iou',
                # mode='atss',
                ptxywh_b=ptxywh[i],
                img_ts=imgs_ts[i],
                num_atss_topk=9)
            '''正反例设置'''
            gretinas[i][mask_pos_b, 0] = torch.tensor(1., device=device)
            if mash_ignore_b is not None:
                gretinas[i][mash_ignore_b, 0] = torch.tensor(-1.,
                                                             device=device)

            labels_b = labels2onehot4ts(glabels_b - 1, cfg.NUM_CLASSES)
            gretinas[i][mask_pos_b,
                        1:s_] = labels_b[boxes_index][mask_pos_b].type(
                            torch.float)  # 正例才匹配
            # _gtxywh = boxes_encode4retina(cfg, self.anc_obj, gboxes_ltrb_b[boxes_index])
            # _gtxywh = boxes_encode4ssd(cfg, self.anc_obj, gboxes_ltrb_b[boxes_index])
            gretinas[i][mask_pos_b,
                        s_:s_ + 4] = gboxes_ltrb_b[boxes_index][mask_pos_b]

            # gretinas[i] = pos_match_retina(cfg, dim=gdim, gkeypoints_b=None,
            #                                gboxes_ltrb_b=gboxes_ltrb_b, glabels_b=glabels_b, anc_obj=self.anc_obj,
            #                                ptxywh_b=ptxywh[i], img_ts=imgs_ts[i])

            # 匹配正例可视化
            if cfg.IS_VISUAL:
                _mask_pos = gretinas[i, :, 0] > 0  # 3d ->1d
                _img_ts = imgs_ts[i].clone()
                anc_ltrb = xywh2ltrb(self.anc_obj.ancs_xywh)[_mask_pos]
                from f_tools.pic.enhance.f_data_pretreatment4pil import f_recover_normalization4ts
                _img_ts = f_recover_normalization4ts(_img_ts)
                flog.debug('gt数 %s , 正例数量 %s' %
                           (gboxes_ltrb_b.shape[0], anc_ltrb.shape[0]))
                f_show_od_ts4plt(
                    _img_ts,
                    gboxes_ltrb=gboxes_ltrb_b.cpu(),
                    pboxes_ltrb=anc_ltrb.cpu(),
                    is_recover_size=True,
                    # grids=grids_ts.cpu().numpy(),
                    # plabels_text=pconf_b[index_match_dim].sigmoid(),
                    # glabels_text=colrow_index[None]
                )

        mask_pos_2d = gretinas[:, :, 0] > 0  # torch.Size([2, 32526])
        nums_pos = (mask_pos_2d.sum(-1).to(
            torch.float)).clamp(min=torch.finfo(torch.float16).eps)
        # mask_neg_2d = gretinas[:, :, 0] == 0
        mask_ignore_2d = gretinas[:, :, 0] == -1
        # s_ = 1 + cfg.NUM_CLASSES
        ''' ----------------cls损失---------------- '''
        # pcls_sigmoid 已归一
        gcls = gretinas[:, :, 1:s_]
        _loss_val = x_bce(pcls_sigmoid, gcls, reduction="none")
        l_cls = ((_loss_val.sum(-1) * mask_pos_2d).sum(-1) /
                 nums_pos).mean() * cfg.LOSS_WEIGHT[2]
        ''' ----------------conf损失 ---------------- '''
        # pconf_sigmoid 已归一
        gconf = gretinas[:, :, 0]  # 已归一化
        _loss_val = x_bce(pconf_sigmoid, gconf, reduction="none")
        mask_neg_hard = f_ohem(_loss_val,
                               nums_pos * 3,
                               mask_pos=mask_pos_2d,
                               mash_ignore=mask_ignore_2d)
        l_conf_pos = ((_loss_val * mask_pos_2d).sum(-1) /
                      nums_pos).mean() * cfg.LOSS_WEIGHT[0]
        l_conf_neg = ((_loss_val * mask_neg_hard).sum(-1) /
                      nums_pos).mean() * cfg.LOSS_WEIGHT[1]

        # l_pos, l_neg = focalloss(pconf_sigmoid, gconf, mask_pos=mask_pos_2d, mash_ignore=mask_ignore_2d,
        #                          is_debug=True, alpha=0.5)
        # l_conf_pos = (l_pos.sum(-1).sum(-1) / nums_pos).mean() * 7
        # l_conf_neg = (l_neg.sum(-1).sum(-1) / nums_pos).mean() * 7

        # l_pos, l_neg = focalloss(pconf, gconf, mask_pos=mask_pos, mash_ignore=mash_ignore,
        #                          alpha=0.25, gamma=2,
        #                          reduction='none', is_debug=True)
        # loss_conf_pos = (l_pos.sum(-1) / nums_pos).mean() * cfg.LOSS_WEIGHT[0]
        # loss_conf_neg = l_neg.sum(-1).mean() * cfg.LOSS_WEIGHT[1]
        ''' ---------------- 回归损失 ----------------- '''
        # 正例筛选后计算
        gboxes_ltrb_m_pos = gretinas[:, :, s_:s_ + 4][mask_pos_2d]
        ancs_xywh_m_pos = self.anc_obj.ancs_xywh.unsqueeze(0).repeat(
            batch, 1, 1)[mask_pos_2d]
        gtxywh_pos = boxes_encode4ssd(cfg, ancs_xywh_m_pos,
                                      ltrb2xywh(gboxes_ltrb_m_pos))
        _loss_val = F.smooth_l1_loss(ptxywh[mask_pos_2d],
                                     gtxywh_pos,
                                     reduction="none")
        l_box = _loss_val.sum(-1).mean()

        log_dict = OrderedDict()
        loss_total = l_conf_pos + l_conf_neg + l_cls + l_box

        log_dict['l_total'] = loss_total.item()
        log_dict['l_conf_pos'] = l_conf_pos.item()
        log_dict['l_conf_neg'] = l_conf_neg.item()
        log_dict['loss_cls'] = l_cls.item()
        log_dict['l_box'] = l_box.item()

        log_dict['cls_max'] = pcls_sigmoid.max().item()
        log_dict['conf_max'] = pconf_sigmoid.max().item()

        log_dict['cls_mean'] = pcls_sigmoid.mean().item()
        log_dict['conf_mean'] = pconf_sigmoid.mean().item()

        log_dict['cls_min'] = pcls_sigmoid.min().item()
        log_dict['conf_min'] = pconf_sigmoid.min().item()

        return loss_total, log_dict
Esempio n. 9
0
def focalloss(pcls_sigmoid,
              gcls,
              mask_pos,
              mash_ignore=None,
              alpha=0.25,
              gamma=2,
              is_debug=False):
    '''
    针对离散的 label
    :param pcls_sigmoid:
    :param gcls:
    :param mask_pos: mask为2D
    :param mash_ignore: mask为2D
    :param alpha:
    :param gamma:
    :param reduction:
    :param is_debug:
    :return:
    '''
    eps = torch.finfo(torch.float16).eps
    pcls_sigmoid = pcls_sigmoid.clamp(min=eps, max=1 - eps)

    # 定位到具体的正例
    if gcls.dim() == 3:
        mask_pos4cls = gcls == 1  # 同维 torch.Size([5, 3614, 3])
        _mask_pos = torch.logical_and(
            mask_pos.unsqueeze(-1).repeat(1, 1, gcls.shape[-1]), mask_pos4cls)
    else:
        _mask_pos = mask_pos
    '''-----这里和输入复写-----'''
    # 正例-0.25 反例-0.75
    alpha_ts = torch.tensor(alpha, device=pcls_sigmoid.device)
    _alpha_factor = torch.where(_mask_pos, alpha_ts, 1. - alpha_ts)
    # 简单的分低 难的分高
    focal_weight = torch.where(_mask_pos, 1. - pcls_sigmoid, pcls_sigmoid)
    focal_weight = _alpha_factor * torch.pow(focal_weight, gamma)
    # bce = -(gcls * torch.log(pcls) + (1.0 - gcls) * torch.log(1.0 - pcls))
    bce = x_bce(pcls_sigmoid, gcls)
    '''-----这里和输入复写完成-----'''

    if mash_ignore is None:
        loss_val = focal_weight * bce
    else:
        if gcls.dim() == 3:
            _mash_ignore = mash_ignore.unsqueeze(-1).repeat(
                1, 1, gcls.shape[-1])
        else:
            _mash_ignore = mash_ignore
        loss_val = focal_weight * bce * torch.logical_not(_mash_ignore)

    if is_debug:
        if mash_ignore is None:
            _mask_neg = torch.logical_not(_mask_pos)
        else:
            if gcls.dim() == 3:
                mash_ignore = mash_ignore.unsqueeze(-1).repeat(
                    1, 1, gcls.shape[-1])
            _mask_neg = torch.logical_not(
                torch.logical_or(_mask_pos, mash_ignore))
        l_pos = loss_val * _mask_pos
        l_neg = loss_val * _mask_neg
        return l_pos, l_neg

    return loss_val
Esempio n. 10
0
    def forward(self, p_center, targets, imgs_ts=None):
        '''

        :param p_center:
          :param targets: list
            target['boxes'] = target['boxes'].to(device)
            target['labels'] = target['labels'].to(device)
            target['size'] = target['size']
            target['image_id'] = int
        :param imgs_ts:
        :return:
        '''
        cfg = self.cfg
        pcls, ptxy, ptwh = p_center
        device = pcls.device
        batch, c, h, w = pcls.shape

        # b,c,h,w -> b,h,w,c -> b,h*w,c
        pcls = pcls.permute(0, 2, 3, 1).contiguous().view(batch, -1, self.cfg.NUM_CLASSES)
        ptxy = ptxy.permute(0, 2, 3, 1).contiguous().view(batch, -1, 2)
        ptwh = ptwh.permute(0, 2, 3, 1).contiguous().view(batch, -1, 2)

        fsize_wh = torch.tensor([h, w], device=device)

        # num_class + txywh + weight + gt4  conf通过高斯生成 热力图层数表示类别索引
        if cfg.NUM_KEYPOINTS > 0:
            gdim = cfg.NUM_CLASSES + cfg.NUM_KEYPOINTS * 2 + 4 + 1 + 4
        else:
            gdim = cfg.NUM_CLASSES + 4 + 1 + 4
        gres = torch.empty((batch, h, w, gdim), device=device)

        # 匹配GT
        for i, target in enumerate(targets):
            # batch 遍历每一张图
            gboxes_ltrb_b = targets[i]['boxes']
            glabels_b = targets[i]['labels']
            # 处理这张图的所有标签
            gres[i] = match4center(gboxes_ltrb_b=gboxes_ltrb_b,
                                   glabels_b=glabels_b,
                                   fsize_wh=fsize_wh,
                                   dim=gdim,
                                   cfg=cfg,
                                   )

            if cfg.IS_VISUAL:
                from f_tools.pic.enhance.f_data_pretreatment4pil import f_recover_normalization4ts
                _img_ts = f_recover_normalization4ts(imgs_ts[i].clone())
                from torchvision.transforms import functional as transformsF
                img_pil = transformsF.to_pil_image(_img_ts).convert('RGB')
                import numpy as np
                # img_np = np.array(img_pil)

                '''plt画图部分'''
                from matplotlib import pyplot as plt
                plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
                plt.rcParams['axes.unicode_minus'] = False

                # 这里的热力图肯定的偏差  [128,128]
                data_hot = torch.zeros_like(gres[i, :, :, 0])  # 只需要一层即可
                for label in glabels_b.unique():
                    # print(ids2classes[str(int(label))])
                    # 类别合并输出
                    flog.debug(' %s', gres[i, :, :, 3:7][gres[i, :, :, (label - 1).long()] == 1])
                    torch.max(data_hot, gres[i, :, :, (label - 1).long()], out=data_hot)  # 这里是类别合并
                plt.imshow(data_hot.cpu())
                plt.imshow(img_pil.resize(fsize_wh), alpha=0.7)
                plt.colorbar()

                # x,y表示横纵坐标,color表示颜色:'r':红  'b':蓝色 等,marker:标记,edgecolors:标记边框色'r'、'g'等,s:size大小
                boxes_xywh_cpu = ltrb2xywh(gboxes_ltrb_b).cpu()

                fsize_cpu = fsize_wh.cpu()
                xys_f = boxes_xywh_cpu[:, :2] * fsize_cpu
                plt.scatter(xys_f[:, 0], xys_f[:, 1], color='r', s=5)  # 红色

                boxes_ltrb_cpu = gboxes_ltrb_b.cpu()
                boxes_ltrb_f = boxes_ltrb_cpu * fsize_cpu.repeat(2)
                current_axis = plt.gca()
                for i, box_ltrb_f in enumerate(boxes_ltrb_f):
                    l, t, r, b = box_ltrb_f
                    # ltwh
                    current_axis.add_patch(plt.Rectangle((l, t), r - l, b - t, color='green', fill=False, linewidth=2))
                    # current_axis.text(l, t - 2, ids2classes[int(glabels[i])], size=8, color='white',
                    #                   bbox={'facecolor': 'green', 'alpha': 0.6})
                plt.show()

        gres = gres.reshape(batch, -1, gdim)

        ''' ---------------- cls损失 只计算正例---------------- '''
        gcls = gres[:, :, :cfg.NUM_CLASSES]
        # mask_pos_3d = gcls > 0  # torch.Size([3, 16384, 3])
        # mask_neg_3d = gcls == 0
        mask_pos_3d = gcls == 1  # 只有中心点为1正例 torch.Size([3, 16384, 3])
        mask_neg_3d = gcls != 1
        nums_pos = torch.sum(torch.sum(mask_pos_3d, dim=-1), dim=-1)
        # mask_pos_2d = torch.any(mask_pos_3d, -1)

        # focloss
        pcls_sigmoid = pcls.sigmoid()
        l_cls_pos, l_cls_neg = focalloss_center(pcls_sigmoid, gcls)
        l_cls_pos = torch.mean(torch.sum(torch.sum(l_cls_pos, -1), -1) / nums_pos)
        l_cls_neg = torch.mean(torch.sum(torch.sum(l_cls_neg, -1), -1) / nums_pos)

        # l_cls_neg = l_cls_neg.sum(-1).sum(-1).mean() # 等价

        ''' ---------------- box损失 ----------------- '''
        log_dict = {}
        # num_class + txywh + weight + gt4
        if cfg.MODE_TRAIN == 2:  # iou
            ptxywh = torch.cat([ptxy, ptwh], dim=-1)
            pboxes_ltrb = boxes_decode4center(self.cfg, fsize_wh, ptxywh)
            mask_pos_2d = torch.any(mask_pos_3d, -1)  # torch.Size([16, 16384])
            # torch.Size([16, 16384, 4])  -> torch.Size([19, 4])
            p_ltrb_pos = pboxes_ltrb[mask_pos_2d]
            g_ltrb_pos = gres[..., cfg.NUM_CLASSES + 4 + 1:cfg.NUM_CLASSES + 4 + 1 + 4][mask_pos_2d]
            iou = bbox_iou4one(p_ltrb_pos, g_ltrb_pos, is_giou=True)
            l_reg = 5 * torch.mean(1 - iou)

            l_total = l_cls_pos + l_cls_neg + l_reg

            log_dict['l_total'] = l_total.item()
            log_dict['l_cls_pos'] = l_cls_pos.item()
            log_dict['l_cls_neg'] = l_cls_neg.item()
            log_dict['l_reg'] = l_reg.item()

        elif cfg.MODE_TRAIN == 1:
            weight = gres[:, :, cfg.NUM_CLASSES + 4]  # 这个可以判断正例 torch.Size([32, 845])
            gtxy = gres[:, :, cfg.NUM_CLASSES:cfg.NUM_CLASSES + 2]
            gtwh = gres[:, :, cfg.NUM_CLASSES + 2:cfg.NUM_CLASSES + 4]
            ptxy_sigmoid = ptxy.sigmoid()  # 这个需要归一化
            _loss_val = x_bce(ptxy_sigmoid, gtxy, reduction="none")
            # _loss_val = F.binary_cross_entropy_with_logits(ptxy, gtxy, reduction="none")
            # _loss_val[mask_pos_2d].sum() 与这个等价
            l_txty = torch.mean(torch.sum(torch.sum(_loss_val * weight.unsqueeze(-1), -1), -1) / nums_pos)
            _loss_val = F.smooth_l1_loss(ptwh, gtwh, reduction="none")
            l_twth = torch.mean(torch.sum(torch.sum(_loss_val * weight.unsqueeze(-1), -1), -1) / nums_pos)

            l_total = l_cls_pos + l_cls_neg + l_txty + l_twth

            log_dict['l_total'] = l_total.item()
            log_dict['l_cls_pos'] = l_cls_pos.item()
            log_dict['l_cls_neg'] = l_cls_neg.item()
            log_dict['l_xy'] = l_txty.item()
            log_dict['l_wh'] = l_twth.item()
        else:
            raise Exception('cfg.MODE_TRAIN = %s 不存在' % cfg.MODE_TRAIN)

        return l_total, log_dict
Esempio n. 11
0
    def forward(self, p_yolo_tuple, targets, imgs_ts=None):
        ''' 只支持相同的anc数

        :param p_yolo_tuple: pconf pcls ptxywh
            pconf: torch.Size([3, 10647, 1])
            pcls: torch.Size([3, 10647, 3])
            ptxywh: torch.Size([3, 10647, 4])
        :param targets: list
            target['boxes'] = target['boxes'].to(device)
            target['labels'] = target['labels'].to(device)
            target['size'] = target['size']
            target['image_id'] = int
        :return:
        '''
        cfg = self.cfg
        pconf, pcls, ptxywh = p_yolo_tuple
        device = ptxywh.device
        batch, hwa, c = ptxywh.shape  # [3, 10647, 4]

        if cfg.MODE_TRAIN == 5:
            # yolo5 conf1 + label1 + goff_xywh4 + gxywh4 =10
            gdim = 12
        else:
            # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
            gdim = 1 + cfg.NUM_CLASSES + 4 + 1 + 4

        # h*w*anc

        gyolos = torch.empty((batch, hwa, gdim), device=device)

        # 匹配GT
        for i, target in enumerate(targets):  # batch遍历
            gboxes_ltrb_b = target['boxes']  # ltrb
            glabels_b = target['labels']
            ''' 可视化在里面 每层特图不一样'''

            if cfg.MODE_TRAIN == 5:
                gyolos[i] = fmatch4yolov5(gboxes_ltrb_b=gboxes_ltrb_b,
                                          glabels_b=glabels_b,
                                          dim=gdim,
                                          ptxywh_b=ptxywh[i],
                                          device=device,
                                          cfg=cfg,
                                          img_ts=imgs_ts[i],
                                          pconf_b=pconf[i])
            else:
                # gyolos[i] = fmatch4yolov3(gboxes_ltrb_b=gboxes_ltrb_b,
                #                           glabels_b=glabels_b,
                #                           dim=gdim,
                #                           ptxywh_b=ptxywh[i],
                #                           device=device, cfg=cfg,
                #                           img_ts=imgs_ts[i],
                #                           pconf_b=pconf[i])

                gyolos[i] = fmatch4yolov3_iou(gboxes_ltrb_b=gboxes_ltrb_b,
                                              glabels_b=glabels_b,
                                              dim=gdim,
                                              ptxywh_b=ptxywh[i],
                                              device=device,
                                              cfg=cfg,
                                              img_ts=imgs_ts[i],
                                              pconf_b=pconf[i],
                                              val_iou=0.3)

        # gyolos [3, 10647, 13] conf-1, cls-3, tbox-4, weight-1, gltrb-4  = 13
        s_ = 1 + cfg.NUM_CLASSES

        gconf = gyolos[:, :, 0]  # 正例使用1

        mask_pos_2d = gconf > 0  # 同维bool索引 忽略的-1不计
        mask_neg_2d = gconf == 0  # 忽略-1 不管
        nums_pos = (mask_pos_2d.sum(-1).to(
            torch.float)).clamp(min=torch.finfo(torch.float16).eps)

        # # 使用 IOU 作为 conf 解码pxywh 计算预测与 GT 的 iou 作为 gconf
        # with torch.no_grad():  # torch.Size([3, 40, 13, 13])
        #     gyolos = gyolos.view(batch, -1, gdim)  # 4d -> 3d [3, 13, 13, 5, 13] -> [3, 169*5, 13]
        #     # mask_pos_2d = gyolos[:, :, 0] == 1  # 前面已匹配,降维运算 [3, xx, 13] -> [3, xx]
        #
        #     gltrb = gyolos[:, :, -4:]  # [3, 169*5, 13] ->  [3, 169*5, 4]
        #     pltrb = boxes_decode4yolo3(ptxywh, cfg)
        #
        #     _pltrb = pltrb.view(-1, 4)
        #     _gltrb = gltrb.view(-1, 4)  # iou 只支持2位
        #     iou_p = bbox_iou4one(_pltrb, _gltrb, is_ciou=True)  # 一一对应IOU
        #     iou_p = iou_p.view(batch, -1)  # 匹配每批的IOU [nn,1] -> [batch,nn/batch]
        #
        #     '''可视化 匹配的预测框'''
        #     debug = False  # torch.isnan(loss_conf_pos)
        #     if debug:  # debug
        #         # d0, d1 = torch.where(mask_pos_2d)  # [3,845]
        #         for i in range(batch):
        #             from f_tools.pic.enhance.f_data_pretreatment4pil import f_recover_normalization4ts
        #             # img_ts = f_recover_normalization4ts(imgs_ts[i])
        #             # mask_ = d0 == i
        #             # _pltrb = _pltrb[d0[mask_], d1[mask_]].cpu()
        #             # _gbox_p = _gltrb[d0[mask_], d1[mask_]].cpu()
        #             _img_ts = imgs_ts[i].clone()
        #             _pltrb_show = pltrb[i][mask_pos[i]]
        #             _gltrb_show = gltrb[i][mask_pos[i]]
        #
        #             iou = bbox_iou4one(_pltrb_show, _gltrb_show)
        #             flog.debug('预测 iou %s', iou)
        #             _img_ts = f_recover_normalization4ts(_img_ts)
        #             f_show_od_ts4plt(_img_ts, gboxes_ltrb=_gltrb_show.detach().cpu()
        #                              , pboxes_ltrb=_pltrb_show.detach().cpu(), is_recover_size=True,
        #                              )
        #
        # gconf = iou_p  # 使用 iou赋值

        gyolos_pos = gyolos[mask_pos_2d]
        log_dict = {}

        if cfg.MODE_TRAIN == 5:
            # yolo5 conf1 + label1 + goff_xywh4 + gxywh4 +ancwh2 =12
            ''' ----------------cls损失 只计算正例---------------- '''
            pcls_sigmoid_pos = pcls[mask_pos_2d].sigmoid()  # 归一
            gcls_pos = gyolos_pos[:, 1:2]
            gcls_pos = labels2onehot4ts(gcls_pos - 1, cfg.NUM_CLASSES)
            _loss_val = x_bce(pcls_sigmoid_pos, gcls_pos, reduction="none")
            l_cls = _loss_val.sum(-1).mean()
            ''' ----------------box损失   iou----------------- '''
            ptxty_sigmoid_pos = ptxywh[mask_pos_2d][:, :2].sigmoid(
            ) * 2. - 0.5  # 格子偏移[-0.5 ~ 1.5]
            gxywh_pos = gyolos_pos[:, 6:10]
            _ancwh_pos = gyolos_pos[:, 10:12]

            ptwth_sigmoid_pos = (ptxywh[mask_pos_2d][:, 2:4].sigmoid() *
                                 2)**2 * _ancwh_pos  # [0~4]
            pxywh_pos = torch.cat([ptxty_sigmoid_pos, ptwth_sigmoid_pos], -1)

            iou_zg = bbox_iou4one_2d(xywh2ltrb4ts(pxywh_pos),
                                     xywh2ltrb4ts(gxywh_pos),
                                     is_giou=True)
            # iou_zg = bbox_iou4y(xywh2ltrb4ts(pzxywh), gltrb_pos_tx, GIoU=True)
            # print(iou_zg)
            l_reg = (1 - iou_zg).mean()
            ''' ----------------conf损失 ---------------- '''
            pconf_sigmoid = pconf.sigmoid().view(
                batch, -1)  # [3, 10647, 1] -> [3, 10647]
            gconf[mask_pos_2d] = iou_zg.detach().clamp(0)  # 使用IOU值修正正例值

            # ------------conf-mse ------------'''
            # _loss_val = F.mse_loss(pconf_sigmoid, gconf, reduction="none")
            # # _loss_val = F.binary_cross_entropy_with_logits(pconf_sigmoid, gconf, reduction="none")
            # l_conf_pos = ((_loss_val * mask_pos_2d).sum(-1) / nums_pos).mean() * 12
            # l_conf_neg = ((_loss_val * mask_neg_2d).sum(-1) / nums_pos).mean() * 2.5

            # pos_ = _loss_val[mask_pos_2d]
            # l_conf_pos = pos_.mean()
            # l_conf_neg = _loss_val[mask_neg_2d].mean()

            # ------------conf-focalloss ------------'''
            mask_ignore_2d = torch.logical_not(
                torch.logical_or(mask_pos_2d, mask_neg_2d))
            # l_pos, l_neg = focalloss(pconf_sigmoid, gconf, mask_pos=mask_pos_2d, mash_ignore=mask_ignore_2d,
            #                          is_debug=True)
            # l_conf_pos = (l_pos.sum(-1) / nums_pos).mean()
            # l_conf_neg = (l_neg.sum(-1) / nums_pos).mean()

            # ------------conf-ohem ------------'''
            _loss_val = x_bce(pconf_sigmoid, gconf, reduction="none")
            mask_neg_hard = f_ohem(_loss_val,
                                   nums_pos * 3,
                                   mask_pos=mask_pos_2d,
                                   mash_ignore=mask_ignore_2d)
            l_conf_pos = ((_loss_val * mask_pos_2d).sum(-1) / nums_pos).mean()
            l_conf_neg = ((_loss_val * mask_neg_hard).sum(-1) /
                          nums_pos).mean()
            ''' ---------------- loss完成 ----------------- '''
            l_total = l_conf_pos + l_conf_neg + l_cls + l_reg

            log_dict['l_total'] = l_total.item()
            log_dict['l_conf_pos'] = l_conf_pos.item()
            log_dict['l_conf_neg'] = l_conf_neg.item()
            log_dict['l_cls'] = l_cls.item()
            log_dict['l_reg'] = l_reg.item()

        else:
            ''' ----------------cls损失---------------- '''
            pcls_sigmoid = pcls.sigmoid()  # 归一
            gcls = gyolos[:, :, 1:s_]
            _loss_val = x_bce(pcls_sigmoid, gcls, reduction="none")
            l_cls = ((_loss_val.sum(-1) * mask_pos_2d).sum(-1) /
                     nums_pos).mean()
            ''' ----------------conf损失 ---------------- '''
            pconf_sigmoid = pconf.sigmoid().view(
                batch, -1)  # [3, 10647, 1] -> [3, 10647]

            # ------------conf-mse ------------'''
            # _loss_val = F.mse_loss(pconf_sigmoid, gconf, reduction="none")
            # _loss_val = F.binary_cross_entropy_with_logits(pconf_sigmoid, gconf, reduction="none")

            # l_conf_pos = ((_loss_val * mask_pos_2d).mean(-1)).mean() * 5.
            # l_conf_neg = ((_loss_val * mask_neg_2d).mean(-1)).mean() * 1.
            # l_conf_pos = ((_loss_val * mask_pos_2d).sum(-1) / nums_pos).mean() * 5.
            # l_conf_neg = ((_loss_val * mask_neg_2d).sum(-1) / nums_pos).mean() * 1.

            # l_conf_pos = _loss_val[mask_pos].mean() * 5
            # l_conf_neg = _loss_val[mask_neg].mean()

            # ------------conf-focalloss ------------'''
            mask_ignore_2d = torch.logical_not(
                torch.logical_or(mask_pos_2d, mask_neg_2d))
            # l_pos, l_neg = focalloss(pconf_sigmoid, gconf, mask_pos=mask_pos_2d, mash_ignore=mask_ignore_2d,
            #                          is_debug=True)
            # l_conf_pos = (l_pos.sum(-1) / nums_pos).mean()
            # l_conf_neg = (l_neg.sum(-1) / nums_pos).mean()

            # ------------conf-ohem ------------'''
            _loss_val = x_bce(pconf_sigmoid, gconf, reduction="none")
            mask_neg_hard = f_ohem(_loss_val,
                                   nums_pos * 3,
                                   mask_pos=mask_pos_2d,
                                   mash_ignore=mask_ignore_2d)
            l_conf_pos = ((_loss_val * mask_pos_2d).sum(-1) / nums_pos).mean()
            l_conf_neg = ((_loss_val * mask_neg_hard).sum(-1) /
                          nums_pos).mean()
            ''' ----------------box损失   xy采用bce wh采用mes----------------- '''
            # conf-1, cls-3, tbox-4, weight-1, gltrb-4  = 13
            weight = gyolos[:, :, s_ + 4]  # torch.Size([32, 845])
            ptxty_sigmoid = ptxywh[:, :, :2].sigmoid()  # 这个需要归一化
            ptwth = ptxywh[:, :, 2:4]
            gtxty = gyolos[:, :, s_:s_ + 2]
            gtwth = gyolos[:, :, s_ + 2:s_ + 4]

            _loss_val = x_bce(ptxty_sigmoid, gtxty, reduction="none")
            l_txty = ((_loss_val.sum(-1) * mask_pos_2d * weight).sum(-1) /
                      nums_pos).mean()
            _loss_val = F.mse_loss(ptwth, gtwth, reduction="none")
            l_twth = ((_loss_val.sum(-1) * mask_pos_2d * weight).sum(-1) /
                      nums_pos).mean()

            l_total = l_conf_pos + l_conf_neg + l_cls + l_txty + l_twth

            log_dict['l_total'] = l_total.item()
            log_dict['l_conf_pos'] = l_conf_pos.item()
            log_dict['l_conf_neg'] = l_conf_neg.item()
            log_dict['l_cls'] = l_cls.item()
            log_dict['l_xy'] = l_txty.item()
            log_dict['l_wh'] = l_twth.item()

        # log_dict['p_max'] = pconf.max().item()
        # log_dict['p_min'] = pconf.min().item()
        # log_dict['p_mean'] = pconf.mean().item()
        return l_total, log_dict
Esempio n. 12
0
    def forward(self, pyolos, targets, imgs_ts=None):
        '''

        :param pyolos: torch.Size([32, 6, 14, 14]) [conf-1,class-20,box4]
        :param targets:
        :param imgs_ts:
        :return:
        '''
        cfg = self.cfg
        device = pyolos.device
        batch, c, h, w = pyolos.shape  # torch.Size([32, 13,13, 8])
        # b,c,h,w -> b,c,hw -> b,hw,c  torch.Size([32, 169, 8])
        pyolos = pyolos.view(batch, c, -1).permute(0, 2, 1)
        s_ = 1 + cfg.NUM_CLASSES
        ptxywh = pyolos[..., s_:s_ + 4]  # torch.Size([32, 169, 4])

        # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
        gdim = 1 + cfg.NUM_CLASSES + 4 + 1 + 4
        gyolos = torch.empty((batch, h, w, gdim),
                             device=device)  # 每批会整体更新这里不需要赋0

        for i, target in enumerate(targets):  # batch遍历
            gboxes_ltrb_b = target['boxes']  # ltrb
            glabels_b = target['labels']
            '''
            yolo4
            1. 每层选一个匹配一个 anc与GT的IOU最大的一个
                技巧gt的xy可调整成 格子偏移与pxy匹配
            2. 其它的IOU>0.4忽略,除正例
            3. reg损失: 解码预测 pxy.sigmoid exp(pwh*anc) -> 进行IOU loss
                正例损失进行平均, 权重0.05
            4. cls损失: 
                label_smooth 标签平滑正则化, onehot* (1-0.01) + 0.01 /num_class
                pos_weight=0.5
                loss_weight=0.5 * num_classes / 80 = 0.01875
            5. conf损失:
                整体权重0.4  忽略的
            6. 每一层的损失全加起来
            '''
            gyolos[i] = fmatch4yolov1(
                gboxes_ltrb_b=gboxes_ltrb_b,
                glabels_b=glabels_b,
                grid=h,  # 7
                gdim=gdim,
                device=device,
                img_ts=imgs_ts[i],
                cfg=cfg,
                use_conf=True)
            '''可视化验证'''
            if cfg.IS_VISUAL:
                # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
                gyolo_test = gyolos[i].clone()  # torch.Size([32, 13, 13, 9])
                gyolo_test = gyolo_test.view(-1, gdim)
                gconf_one = gyolo_test[:, 0]
                mask_pos = gconf_one == 1  # [169]

                # torch.Size([169, 4])
                txywh_t = gyolo_test[:, 1 + cfg.NUM_CLASSES:1 +
                                     cfg.NUM_CLASSES + 4]

                # 这里是修复所有的xy
                zpxy_t = txywh_t[:, :2] + f_mershgrid(
                    h, w, is_rowcol=False).to(device)
                hw_ts = torch.tensor((h, w), device=device)
                zpxy = torch.true_divide(zpxy_t, hw_ts)
                zpwh = torch.exp(txywh_t[:, 2:]) / hw_ts
                zpxywh_pos = torch.cat([zpxy, zpwh], dim=-1)[mask_pos]

                from f_tools.pic.enhance.f_data_pretreatment4pil import f_recover_normalization4ts
                img_ts = f_recover_normalization4ts(imgs_ts[i])
                from torchvision.transforms import functional as transformsF
                img_pil = transformsF.to_pil_image(img_ts).convert('RGB')
                import numpy as np
                img_np = np.array(img_pil)
                f_show_od_np4plt(img_np,
                                 gboxes_ltrb=gboxes_ltrb_b.cpu(),
                                 pboxes_ltrb=xywh2ltrb(zpxywh_pos.cpu()),
                                 is_recover_size=True,
                                 grids=(h, w))

        gyolos = gyolos.view(batch, -1, gdim)  # b,hw,7
        gconf = gyolos[:, :, 0]  # torch.Size([5, 169])
        mask_pos = gconf > 0  # torch.Size([32, 169])
        # mask_pos = gconf == 1  # yolo1 gt 写死是1
        mask_neg = gconf == 0
        nums_pos = (mask_pos.sum(-1).to(
            torch.float)).clamp(min=torch.finfo(torch.float16).eps)
        nums_neg = (mask_neg.sum(-1).to(
            torch.float)).clamp(min=torch.finfo(torch.float16).eps)
        pyolos_pos = pyolos[mask_pos]  # torch.Size([32, 169, 13]) -> [nn, 13]
        gyolos_pos = gyolos[mask_pos]  # torch.Size([32, 169, 13]) -> [nn, 13]
        ''' ---------------- 类别-cls损失 ---------------- '''
        # # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
        pcls_sigmoid = pyolos[:, :, 1:s_].sigmoid()  # torch.Size([32, 169, 8])
        gcls = gyolos[:, :, 1:s_]  # torch.Size([32, 169, 13])
        _loss_val = x_bce(pcls_sigmoid, gcls, reduction="none")
        l_cls = ((_loss_val.sum(-1) * mask_pos).sum(-1) / nums_pos).mean()

        # pcls_sigmoid_pos = pyolos_pos[:, 1:s_].sigmoid()
        # gcls_pos = gyolos_pos[:, 1:s_]
        # _loss_val = x_bce(pcls_sigmoid_pos, gcls_pos, reduction="none")  # torch.Size([46, 3])
        # torch.Size([46, 3]) -> val
        # l_cls = _loss_val.sum(-1).mean()
        ''' ---------------- 类别-conf损失 ---------------- '''
        # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
        pconf_sigmoid = pyolos[:, :, 0].sigmoid()

        # ------------ conf-mse ------------''' 666666
        _loss_val = F.mse_loss(pconf_sigmoid, gconf,
                               reduction="none")  # 用MSE效果更好
        l_conf_pos = ((_loss_val * mask_pos).sum(-1) / nums_pos).mean() * 5.
        l_conf_neg = ((_loss_val * mask_neg).sum(-1) / nums_pos).mean() * 1.

        # 效果一样 169:1
        # pos_ = _loss_val[mask_pos]
        # l_conf_pos = pos_.mean() * 1
        # l_conf_neg = _loss_val[mask_neg].mean() * 3

        # ------------ conf_ohem  ap26_26 ------------'''
        # _loss_val = x_bce(pconf_sigmoid, gconf)
        # mask_ignore = torch.logical_not(torch.logical_or(mask_pos, mask_neg))
        # mask_neg_hard = f_ohem(_loss_val, nums_pos * 3, mask_pos=mask_pos, mash_ignore=mask_ignore)
        # l_conf_pos = ((_loss_val * mask_pos).sum(-1) / nums_pos).mean() * 3  # 正例越多反例越多
        # l_conf_neg = ((_loss_val * mask_neg_hard).sum(-1) / nums_pos).mean() * 3

        # ------------ focalloss   ------------
        # l_pos, l_neg = focalloss(pconf_sigmoid, gconf, mask_pos=mask_pos, is_debug=True, alpha=0.5)
        # l_conf_pos = (l_pos.sum(-1).sum(-1) / nums_pos).mean()
        # l_conf_neg = (l_neg.sum(-1).sum(-1) / nums_neg).mean() * 3

        log_dict = {}
        ''' ----------------回归损失   xy采用bce wh采用mes----------------- '''
        if cfg.MODE_TRAIN == 4:
            # ------------ iou损失   ------------
            # 解码pxywh 计算预测与 GT 的 iou 作为 gconf
            # preg_pos = pyolos_pos[:, s_:s_ + 4]
            # # 解码yolo1
            # pxy_pos_toff = preg_pos[..., :2].sigmoid()
            # pwh_pos = torch.exp(preg_pos[..., 2:])
            # pzxywh = torch.cat([pxy_pos_toff, pwh_pos], -1)

            # 这里是归一化的 gt
            gltrb_pos = gyolos_pos[:, s_ + 4 + 1:s_ + 4 + 1 + 4]

            ptxywh = pyolos[..., s_:s_ + 4]
            pltrb_pos = boxes_decode4yolo1(ptxywh, h, w, cfg)[mask_pos]

            iou_zg = bbox_iou4one(pltrb_pos, gltrb_pos, is_giou=True)
            # iou_zg = bbox_iou4y(xywh2ltrb4ts(pzxywh), gltrb_pos_tx, GIoU=True)
            # print(iou_zg)
            l_reg = (1 - iou_zg).mean() * 5
            ''' ---------------- loss完成 ----------------- '''
            l_total = l_conf_pos + l_conf_neg + l_cls + l_reg
            log_dict['l_reg'] = l_reg.item()
        else:
            # ------------ mse+bce   ------------ 666666
            # conf-1, cls-num_class, txywh-4, weight-1, gltrb-4
            # torch.Size([32, 169, 13])  9->实际是8
            ptxty_sigmoid = pyolos[:, :, s_:s_ + 2].sigmoid()  # 4:6
            ptwth = pyolos[:, :, s_ + 2:s_ + 4]  # 这里不需要归一

            weight = gyolos[:, :, s_ + 4]  # 这个是大小目标缩放比例
            gtxty = gyolos[:, :, s_:s_ + 2]  # torch.Size([5, 169, 2])
            gtwth = gyolos[:, :, s_ + 2:s_ + 4]

            # _loss_val = x_bce(ptxty_sigmoid, gtxty, reduction="none")
            _loss_val = F.mse_loss(ptxty_sigmoid, gtxty, reduction="none")
            l_txty = ((_loss_val.sum(-1) * mask_pos * weight).sum(-1) /
                      nums_pos).mean()
            _loss_val = F.mse_loss(ptwth, gtwth, reduction="none")
            l_twth = ((_loss_val.sum(-1) * mask_pos * weight).sum(-1) /
                      nums_pos).mean()
            ''' ---------------- loss完成 ----------------- '''
            l_total = l_conf_pos + l_conf_neg + l_cls + l_txty + l_twth
            log_dict['l_xy'] = l_txty.item()
            log_dict['l_wh'] = l_twth.item()

        log_dict['l_total'] = l_total.item()
        log_dict['l_conf_pos'] = l_conf_pos.item()
        log_dict['l_conf_neg'] = l_conf_neg.item()
        log_dict['l_cls'] = l_cls.item()

        log_dict['p_max'] = pconf_sigmoid.max().item()
        log_dict['p_min'] = pconf_sigmoid.min().item()
        log_dict['p_mean'] = pconf_sigmoid.mean().item()
        return l_total, log_dict
Esempio n. 13
0
    def forward(self, outs, targets, imgs_ts=None):
        '''

        :param outs:   torch.Size([2, 2125, 9])
        :param targets:
            'image_id': 413,
            'size': tensor([500., 309.])
            'boxes': tensor([[0.31400, 0.31715, 0.71000, 0.60841]]),
            'labels': tensor([1.])
        :param imgs_ts:
        :return:
        '''
        cfg = self.cfg
        device = outs.device
        batch, dim_total, pdim = outs.shape

        #  back cls centerness ltrb positivesample iou area
        gdim = 1 + cfg.NUM_CLASSES + 1 + 4 + 1 + 1 + 1
        gres = torch.empty((batch, dim_total, gdim), device=device)

        for i in range(batch):
            gboxes_ltrb_b = targets[i]['boxes']
            glabels_b = targets[i]['labels']

            import time
            # start = time.time()
            gres[i] = match4fcos_v2(
                gboxes_ltrb_b=gboxes_ltrb_b,
                glabels_b=glabels_b,
                gdim=gdim,
                pcos=outs,
                img_ts=imgs_ts[i],
                cfg=cfg,
            )
            # gres[i] = match4fcos(gboxes_ltrb_b=gboxes_ltrb_b,
            #                      glabels_b=glabels_b,
            #                      gdim=gdim,
            #                      pcos=outs,
            #                      img_ts=imgs_ts[i],
            #                      cfg=cfg, )
            # flog.debug('show_time---完成---%s--' % (time.time() - start))

        s_ = 1 + cfg.NUM_CLASSES
        # outs = outs[:, :, :s_ + 1].sigmoid()
        mask_pos = gres[:, :, 0] == 0  # 背景为0 是正例
        nums_pos = torch.sum(mask_pos, dim=-1)
        nums_pos = torch.max(nums_pos, torch.ones_like(nums_pos,
                                                       device=device))

        # back cls centerness ltrb positivesample iou(这个暂时无用) area [2125, 12]
        ''' ---------------- cls损失 计算全部样本,正反例,正例为框内本例---------------- '''
        # obj_cls_loss = BCE_focal_loss()
        # 这里多一个背景一起算
        pcls_sigmoid = outs[:, :, :s_].sigmoid()
        gcls = gres[:, :, :s_]
        # l_cls = torch.mean(obj_cls_loss(pcls_sigmoid, gcls) / nums_pos)
        l_cls_pos, l_cls_neg = focalloss_fcos(pcls_sigmoid, gcls)
        l_cls_pos = torch.mean(
            torch.sum(torch.sum(l_cls_pos, -1), -1) / nums_pos)
        l_cls_neg = torch.mean(
            torch.sum(torch.sum(l_cls_neg, -1), -1) / nums_pos)
        ''' ---------------- conf损失 只计算半径正例 center_ness---------------- '''
        # 和 positive sample 算正例
        mask_pp = gres[:, :, s_ + 1 + 4] == 1
        pconf_sigmoid = outs[:, :, s_].sigmoid()  # center_ness
        gcenterness = gres[:, :, s_]  # (nn,1) # 使用centerness

        # _loss_val = x_bce(pconf_sigmoid, gcenterness, reduction="none")
        _loss_val = x_bce(pconf_sigmoid,
                          torch.ones_like(pconf_sigmoid),
                          reduction="none")  # 用半径1

        # 只算半径正例,提高准确性
        l_conf = 5. * torch.mean(
            torch.sum(_loss_val * mask_pp.float(), dim=-1) / nums_pos)
        ''' ---------------- box损失 计算框内正例---------------- '''
        # conf1 + cls3 + reg4
        # poff_ltrb_exp = torch.exp(outs[:, :, s_:s_ + 4])
        poff_ltrb = outs[:, :, s_:s_ + 4]  # 这个全是特图的距离 全rule 或 exp
        # goff_ltrb = gres[:, :, s_ + 1:s_ + 1 + 4]
        g_ltrb = gres[:, :, s_ + 1:s_ + 1 + 4]

        # _loss_val = F.smooth_l1_loss(poff_ltrb, goff_ltrb, reduction='none')
        # _loss_val = F.mse_loss(poff_ltrb_exp, goff_ltrb, reduction='none')
        # l_reg = torch.sum(torch.sum(_loss_val, -1) * gconf * mask_pos.float(), -1)
        # l_reg = torch.mean(l_reg / nums_pos)

        # 这里是解析归一化图
        # pboxes_ltrb = boxes_decode4fcos(self.cfg, poff_ltrb, is_t=True)
        # p_ltrb_t_pos = pboxes_ltrb[mask_pos]
        # image_size_ts = torch.tensor(cfg.IMAGE_SIZE, device=device)
        # g_ltrb_t_pos = g_ltrb[mask_pos] * image_size_ts.repeat(2).view(1, -1)
        # iou = bbox_iou4one(p_ltrb_t_pos, g_ltrb_t_pos, is_giou=True)

        # 这里是解析归一化图  归一化与特图计算的IOU是一致的
        pboxes_ltrb = boxes_decode4fcos(self.cfg, poff_ltrb)
        p_ltrb_pos = pboxes_ltrb[mask_pos]
        g_ltrb_pos = g_ltrb[mask_pos]
        # iou = bbox_iou4one_2d(p_ltrb_pos, g_ltrb_pos, is_giou=True)
        iou = bbox_iou4one(p_ltrb_pos, g_ltrb_pos, is_giou=True)

        # 使用 iou 与 1 进行bce  debug iou.isnan().any() or iou.isinf().any()
        l_reg = 5 * torch.mean((1 - iou) * gcenterness[mask_pos])

        # iou2 = bbox_iou4one_3d(pboxes_ltrb, g_ltrb, is_giou=True) # 2D 和 3D效果是一样的
        # l_reg2 = torch.mean(torch.sum((1 - iou2) * gcenterness * mask_pos.float(), -1) / nums_pos)

        # _loss_val = x_bce(iou, giou, reduction="none")
        # l_iou = torch.mean(torch.sum(_loss_val * gconf * mask_pos.float(), dim=-1) / nums_pos)

        l_total = l_cls_pos + l_cls_neg + l_conf + l_reg

        log_dict = {}
        log_dict['l_total'] = l_total.item()
        log_dict['l_cls_pos'] = l_cls_pos.item()
        log_dict['l_cls_neg'] = l_cls_neg.item()
        log_dict['l_conf'] = l_conf.item()
        log_dict['l_reg'] = l_reg.item()
        # log_dict['l_iou_max'] = iou.max().item()

        return l_total, log_dict
Esempio n. 14
0
    def forward(self, outs, targets, imgs_ts=None):
        '''

        :param outs: cls1+conf1+ltrb4 torch.Size([2, 2125, 9])
        :param targets:
            'image_id': 413,
            'size': tensor([500., 309.])
            'boxes': tensor([[0.31400, 0.31715, 0.71000, 0.60841]]),
            'labels': tensor([1.])
        :param imgs_ts:
        :return:
        '''
        cfg = self.cfg
        device = outs.device
        batch, dim_total, pdim = outs.shape

        # cls3 centerness1 ltrb4 positive_radius1 positive_ingt1 area1 3+1+4+1+1+1=11
        gdim = cfg.NUM_CLASSES + 1 + 4 + 1 + 1 + 1
        gres = torch.empty((batch, dim_total, gdim), device=device)

        nums_pos = []

        for i in range(batch):
            gboxes_ltrb_b = targets[i]['boxes']
            glabels_b = targets[i]['labels']
            nums_pos.append(gboxes_ltrb_b.shape[0])

            # import time
            # start = time.time()
            gres[i] = match4fcos_v3_noback(
                gboxes_ltrb_b=gboxes_ltrb_b,
                glabels_b=glabels_b,
                gdim=gdim,
                pcos=outs,
                img_ts=imgs_ts[i],
                cfg=cfg,
            )
            # flog.debug('show_time---完成---%s--' % (time.time() - start))

        # cls3 centerness1 ltrb4 positive_radius1 positive_ingt1 area1
        mask_pos = gres[:, :, cfg.NUM_CLASSES + 1 + 4 + 1] == 1  # 框内正例
        nums_pos = torch.tensor(nums_pos, device=device)
        ''' ---------------- cls损失 计算全部样本,正反例,正例为框内本例---------------- '''
        # 框内3D正例 可以用 mask_pos_3d = gcls == 1
        pcls_sigmoid = outs[:, :, :cfg.NUM_CLASSES].sigmoid()
        gcls = gres[:, :, :cfg.NUM_CLASSES]
        l_cls_pos, l_cls_neg = focalloss_fcos(pcls_sigmoid, gcls)
        l_cls_pos = torch.mean(
            torch.sum(torch.sum(l_cls_pos, -1), -1) / nums_pos)
        l_cls_neg = torch.mean(
            torch.sum(torch.sum(l_cls_neg, -1), -1) / nums_pos)
        ''' ---------------- conf损失 只计算半径正例 center_ness---------------- '''
        # 半径正例
        mask_pp = gres[:, :, cfg.NUM_CLASSES + 1 + 4] == 1  # 半径正例
        pconf_sigmoid = outs[:, :, cfg.NUM_CLASSES].sigmoid()  # center_ness
        gcenterness = gres[:, :, cfg.NUM_CLASSES]  # (nn,1) # 使用centerness

        # 与 gcenterness 还是以1为准
        # _loss_val = x_bce(pconf_sigmoid, gcenterness, reduction="none")
        _loss_val = x_bce(pconf_sigmoid,
                          torch.ones_like(pconf_sigmoid),
                          reduction="none")  # 用半径1

        # 只算半径正例,提高准确性
        l_conf = 5. * torch.mean(
            torch.sum(_loss_val * mask_pp.float(), dim=-1) / nums_pos)
        ''' ---------------- box损失 计算框内正例---------------- '''
        # cls3+ conf1+ reg4
        poff_ltrb = outs[:, :, cfg.NUM_CLASSES + 1:cfg.NUM_CLASSES + 1 +
                         4]  # 这个全是特图的距离 全rule 或 exp
        # goff_ltrb = gres[:, :, s_ + 1:s_ + 1 + 4]
        g_ltrb = gres[:, :, cfg.NUM_CLASSES + 1:cfg.NUM_CLASSES + 1 + 4]

        # 这里是解析归一化图  归一化与特图计算的IOU是一致的
        pboxes_ltrb = boxes_decode4fcos(self.cfg, poff_ltrb)
        # 这里采用的是正例计算 直接平均
        p_ltrb_pos = pboxes_ltrb[mask_pos]
        g_ltrb_pos = g_ltrb[mask_pos]
        iou = bbox_iou4one(p_ltrb_pos, g_ltrb_pos, is_giou=True)
        # 使用 iou 与 1 进行bce  debug iou.isnan().any() or iou.isinf().any()
        l_reg = 5 * torch.mean((1 - iou) * gcenterness[mask_pos])

        l_total = l_cls_pos + l_cls_neg + l_conf + l_reg

        log_dict = {}
        log_dict['l_total'] = l_total.item()
        log_dict['l_cls_pos'] = l_cls_pos.item()
        log_dict['l_cls_neg'] = l_cls_neg.item()
        log_dict['l_conf'] = l_conf.item()
        log_dict['l_reg'] = l_reg.item()
        # log_dict['l_iou_max'] = iou.max().item()

        return l_total, log_dict
Esempio n. 15
0
 def i_loss_fun(self, pconf, gconf, weight):
     # return F.binary_cross_entropy(pconf, gconf, weight=weight, reduction='none')
     return x_bce(pconf, gconf, weight=weight)