def train_person_group(groupId): # Train PersonGroup face_api.trainPersonGroup(groupId) # Get training status res = face_api.getPersonGroupTrainingStatus(groupId) res = res.replace('null','None') res_dict = eval(res) training_status = res_dict['status'] print training_status while (training_status=='running'): time.sleep(0.25) res = face_api.getPersonGroupTrainingStatus(groupId) res = res.replace('null','None') res_dict = eval(res) training_status = res_dict['status'] print training_status return training_status
def retake_validate_photos(clientId, personId, step_time, flag_show_photos, imgPath, name): global global_vars global_var = (item for item in global_vars if item["clientId"] == str(clientId)).next() # Ask users if they want to change photo(s) or validate them b = validate_photo(clientId) image_to_paths = [root_path+imgPath+str(name)+"."+str(j)+suffix for j in range(nb_img_max)] while (b==0): global_var['text3'] = "Veuillez repondre" simple_message(clientId, u"Veuillez répondre quelles photos que vous voulez changer ?") while (global_var['respFromHTML'] == ""): pass nb = global_var['respFromHTML'] global_var['respFromHTML'] = "" if ('-' in nb): nb2 = '' for i in range(int(nb[0]), int(nb[2])+1): nb2 = nb2 + str(i) nb = nb2 nb = str_replace_chars(nb, [',',';','.',' '], ['','','','']) if (nb!=""): str_nb = "" for j in range(0, len(nb)): if (j==len(nb)-1): str_nb = str_nb + "'" + nb[j] + "'" else: str_nb = str_nb + "'" + nb[j] + "', " simple_message(clientId, 'Vous souhaitez changer les photos: ' + str_nb + ' ?') global_var['text'] = 'Re-prenant photos' global_var['text2'] = 'Veuillez patienter... ' global_var['text3'] = '' simple_message(clientId, global_var['text'] + ' ' + global_var['text2']) time.sleep(0.25) chrome_server2client(clientId, 'START') for j in range(0, len(nb)): global_var['text3'] = str(j) + ' ont ete prises, reste a prendre : ' + str(len(nb)-j) time.sleep(step_time) print "Reprendre photo ", nb[j] #TODO: add a facedetect here to cut the face from image image_path = image_to_paths[int(nb[j])-1] os.remove(image_path) # Remove old image with open(image_path, 'wb') as f: f.write(global_var['binary_data']) f.close() print "Enregistrer photo " + image_path + ", nb de photos prises : " + nb[j] chrome_server2client(clientId, 'DONE') time.sleep(0.25) a = yes_or_no(clientId, u'Reprise de photos finie, souhaitez-vous réviser vos photos ?', 4) if (a==1): thread_show_photos2 = Thread(target = show_photos, args = (clientId, imgPath, name), name = 'thread_show_photos2_'+clientId) thread_show_photos2.start() b = validate_photo(clientId) global_var['text'] = '' global_var['text2'] = '' global_var['text3'] = '' if (b==1): break # End of While(b==0) print "Adding faces to person group..." image_to_paths = [root_path+imgPath+str(name)+"."+str(j)+suffix for j in range(nb_img_max)] for image_path in image_to_paths: face_api.addPersonFace(groupId, personId, None, image_path, None) # Retrain Person Group resultTrainPersonGroup = face_api.trainPersonGroup(groupId) print "Re-train Person Group: ", resultTrainPersonGroup global_var['flag_enable_recog'] = 1 # Re-enable recognition global_var['flag_ask'] = 1 # Reset asking
def retake_validate_photos(clientId, personId, step_time, flag_show_photos, imgPath, name): global global_vars global_var = (item for item in global_vars if item["clientId"] == str(clientId)).next() # Ask users if they want to change photo(s) or validate them b = validate_photo(clientId) image_to_paths = [root_path+imgPath+str(name)+"."+str(j)+suffix for j in range(nb_img_max)] while (b==0): global_var['text3'] = "Veuillez repondre" simple_message(clientId, u"Veuillez répondre quelles photos que vous voulez changer ?") while (global_var['respFromHTML'] == ""): pass nb = global_var['respFromHTML'] global_var['respFromHTML'] = "" if ('-' in nb): nb2 = '' for i in range(int(nb[0]), int(nb[2])+1): nb2 = nb2 + str(i) nb = nb2 elif (nb=='*' or nb=='all'): nb='' for j in range(0, nb_img_max): nb = nb+str(j+1) elif any(nb[idx] in a for idx in range(0, len(nb))): # If there is any number in string nb2 = '' for j in range(0, len(nb)): if (nb[j] in a): nb2 = nb2 + nb[j] nb = nb2 else: print 'Fatal error: invalid response' nb = '' nb = str_replace_chars(nb, [',',';','.',' '], ['','','','']) if (nb!=""): str_nb = "" for j in range(0, len(nb)): if (j==len(nb)-1): str_nb = str_nb + "'" + nb[j] + "'" else: str_nb = str_nb + "'" + nb[j] + "', " simple_message(clientId, 'Vous souhaitez changer les photos: ' + str_nb + ' ?') global_var['text'] = 'Re-prenant photos' global_var['text2'] = 'Veuillez patienter... ' global_var['text3'] = '' simple_message(clientId, global_var['text'] + ' ' + global_var['text2']) time.sleep(0.25) chrome_server2client(clientId, 'START') for j in range(0, len(nb)): global_var['text3'] = str(j) + ' ont ete prises, reste a prendre : ' + str(len(nb)-j) time.sleep(step_time) print "Reprendre photo ", nb[j] #TODO: add a facedetect here to cut the face from image image_path = image_to_paths[int(nb[j])-1] # os.remove(image_path) # Remove old image delete_image_on_github(image_path) # with open(image_path, 'wb') as f: # f.write(global_var['binary_data']) # f.close() put_image_to_github(image_path, global_var['binary_data']) print "Enregistrer photo " + image_path + ", nb de photos prises : " + nb[j] chrome_server2client(clientId, 'DONE') time.sleep(0.25) a = yes_or_no(clientId, u'Reprise de photos finie, souhaitez-vous réviser vos photos ?', 4) if (a==1): thread_show_photos2 = Thread(target = show_photos, args = (clientId, imgPath, name), name = 'thread_show_photos2_'+clientId) thread_show_photos2.start() b = validate_photo(clientId) global_var['text'] = '' global_var['text2'] = '' global_var['text3'] = '' if (b==1): break # End of While(b==0) print "Adding faces to person group..." image_to_paths = [root_path+imgPath+str(name)+"."+str(j)+suffix for j in range(nb_img_max)] for image_path in image_to_paths: image_data = get_image_from_github(image_path) face_api.addPersonFace(groupId, personId, None, None, image_data) # Retrain Person Group resultTrainPersonGroup = face_api.trainPersonGroup(groupId) print "Re-train Person Group: ", resultTrainPersonGroup global_var['flag_enable_recog'] = 1 # Re-enable recognition global_var['flag_ask'] = 1 # Reset asking
if nom not in list_nom: # Create a Person in a PersonGroup personName = nom personId = face_api.createPerson(groupId, personName, "") list_nom.append(nom) list_personId.append(personId) nbr += 1 else: personId = list_personId[nbr-1] print "Add image...", nom, '\t', image_path face_api.addPersonFace(groupId, personId, "", image_path, None) time.sleep(0.25) resultTrainPersonGroup = face_api.trainPersonGroup(groupId) res = face_api.getPersonGroupTrainingStatus(groupId) res = res.replace('null','None') res_dict = eval(res) training_status = res_dict['status'] print training_status while (training_status=='running'): time.sleep(0.25) res = face_api.getPersonGroupTrainingStatus(groupId) res = res.replace('null','None') res_dict = eval(res) training_status = res_dict['status'] print training_status