#load and show an image
im = cv2.imread('faces/face_85.png', 0)
plt.imshow(im, cmap=plt.cm.gray)
plt.show()

# set up window parameters
window_size = 100
shift_size = 25

# scale the strokes
scale_factor = 8

# how many faces do you want to run?
num_faces = 10

for face in load_faces(n=num_faces):
    im = cv2.imread(face, 0)

    # documentation is in classification.py
    # thresh is minimum confidence
    # eyes, noses, mouths take the confident bounding boxes
    # verbose shows each window classification and accuracy
    classify(im,
             window_size=window_size,
             shift_size=shift_size,
             scale_factor=scale_factor,
             thresh=0.5,
             eyes=2,
             noses=1,
             mouths=1,
             verbose=True)
Esempio n. 2
0
        line = rdp(cluster[path], epsilon=1)

        # line = cluster[path]
        if show:
            x, y = line.T
            plt.plot(x, y)
        # add line to lines
        lines.append(line)

    if show:
        plt.show()

    strokes = lines_to_strokes(lines)

    # normalize strokes
    if len(strokes) > 0:
        strokes[:, 0:2] /= scale_factor
        strokes[0] = [0, 0, 0]

    return strokes


if __name__ == '__main__':
    for face in load_faces(n=5):
        im = cv2.imread(face, 0)
        # strokes = convert_to_3_stroke(im)
        # lines = get_curves(im)
        lines = get_window_3_stroke(im, 0, 0)
        raise
        # draw_strokes(strokes)
                                shift_size=shift_size,
                                scale_factor=scale_factor,
                                thresh=thresh,
                                verbose=verbose)

    # non-maximal suppression
    bboxes = non_maximal_suppression(bboxes, eyes, noses, mouths)

    # make plots
    plot_img_with_bbox(im, bboxes)
    plt.show()


if __name__ == "__main__":
    # get a face image
    faces = load_faces(n=10)

    model = FeatureClassifier()

    # for each face
    for face in faces:
        # zero for grayscale
        im = cv2.imread(face, 0)
        cv2.imshow('image', im)
        cv2.waitKey(0)

        classify(im)

    # convert to SVG
    raise NotImplementedError
    # identify SVG components